Machine Learning Toolbox for Social Scientists - Bookswagon
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer science > Artificial intelligence > Machine learning > Machine Learning Toolbox for Social Scientists: Applied Predictive Analytics with R
Machine Learning Toolbox for Social Scientists: Applied Predictive Analytics with R

Machine Learning Toolbox for Social Scientists: Applied Predictive Analytics with R


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Machine Learning Toolbox for Social Scientists covers predictive methods with complementary statistical "tools" that make it mostly self-contained. The inferential statistics is the traditional framework for most data analytics courses in social science and business fields, especially in Economics and Finance. The new organization that this book offers goes beyond standard machine learning code applications, providing intuitive backgrounds for new predictive methods that social science and business students can follow. The book also adds many other modern statistical tools complementary to predictive methods that cannot be easily found in "econometrics" textbooks: nonparametric methods, data exploration with predictive models, penalized regressions, model selection with sparsity, dimension reduction methods, nonparametric time-series predictions, graphical network analysis, algorithmic optimization methods, classification with imbalanced data, and many others. This book is targeted at students and researchers who have no advanced statistical background, but instead coming from the tradition of "inferential statistics". The modern statistical methods the book provides allows it to be effectively used in teaching in the social science and business fields. Key Features: The book is structured for those who have been trained in a traditional statistics curriculum. There is one long initial section that covers the differences in "estimation" and "prediction" for people trained for causal analysis. The book develops a background framework for Machine learning applications from Nonparametric methods. SVM and NN simple enough without too much detail. It’s self-sufficient. Nonparametric time-series predictions are new and covered in a separate section. Additional sections are added: Penalized Regressions, Dimension Reduction Methods, and Graphical Methods have been increasing in their popularity in social sciences.

Table of Contents:
1. How We Define Machine Learning 2. Preliminaries Part 1. Formal Look at Prediction 3. Bias-Variance Tradeoff 4. Overfitting Part 2. Nonparametric Estimations 5. Parametric Estimations 6. Nonparametric Estimations - Basics 7. Smoothing 8. Nonparametric Classifier - kNN Part 3. Self-learning 9. Hyperparameter Tuning 10. Tuning in Classification 11. Classification Example Part 4. Tree-based Models 12. CART 13. Ensemble Learning 14. Ensemble Applications Part 5. SVM & Neural Networks 15. Support Vector Machines 16. Artificial Neural Networks Part 6. Penalized Regressions 17. Ridge 18. Lasso 19. Adaptive Lasso 20. Sparsity Part 7. Time Series Forecasting 21. ARIMA models 22. Grid Search for Arima 23. Time Series Embedding 24. Random Forest with Times Series 25. Recurrent Neural Networks Part 8. Dimension Reduction Methods 26. Eigenvectors and eigenvalues 27. Singular Value Decomposition 28. Rank r approximations 29. Moore-Penrose Inverse 30. Principle Component Analysis 31. Factor Analysis Part 9. Network Analysis 32. Fundamentals 33. Regularized Covariance Matrix Part 10. R Labs 34. R Lab 1 Basics 35. R Lab 2 Basics II 36. Simulations in R 37. Algorithmic Optimization 38. Imbalanced Data

About the Author :
Yigit Aydede is a Sobey Professor of Economics at Saint Mary’s University, Halifax, Nova Scotia, Canada. He is a founder member of the Research Portal on Machine Learning for Social and Health Policy, a joint initiative by a group of researchers from Saint Mary’s and Dalhousie universities


Best Sellers


Product Details
  • ISBN-13: 9781000958270
  • Publisher: Taylor & Francis Ltd
  • Publisher Imprint: Chapman & Hall/CRC
  • Language: English
  • ISBN-10: 1000958272
  • Publisher Date: 22 Sep 2023
  • Binding: Digital (delivered electronically)
  • Sub Title: Applied Predictive Analytics with R


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Machine Learning Toolbox for Social Scientists: Applied Predictive Analytics with R
Taylor & Francis Ltd -
Machine Learning Toolbox for Social Scientists: Applied Predictive Analytics with R
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Machine Learning Toolbox for Social Scientists: Applied Predictive Analytics with R

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!