Cybersecurity Analytics
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer security > Cybersecurity Analytics: (Chapman & Hall/CRC Data Science Series)
Cybersecurity Analytics: (Chapman & Hall/CRC Data Science Series)

Cybersecurity Analytics: (Chapman & Hall/CRC Data Science Series)


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Cybersecurity Analytics is for the cybersecurity student and professional who wants to learn data science techniques critical for tackling cybersecurity challenges, and for the data science student and professional who wants to learn about cybersecurity adaptations. Trying to build a malware detector, a phishing email detector, or just interested in finding patterns in your datasets? This book can let you do it on your own. Numerous examples and datasets links are included so that the reader can "learn by doing." Anyone with a basic college-level calculus course and some probability knowledge can easily understand most of the material. The book includes chapters containing: unsupervised learning, semi-supervised learning, supervised learning, text mining, natural language processing, and more. It also includes background on security, statistics, and linear algebra. The website for the book contains a listing of datasets, updates, and other resources for serious practitioners.

Table of Contents:
Preface 1 Introduction 2 What is Data Analytics? 2.1 Data Ingestion 2.2 Data Processing and Cleaning 2.3 Visualization and Exploratory Analysis 2.3.1 Scatterplots 2.4 Pattern Recognition 2.4.1 Classification 2.4.2 Clustering 2.5 Feature extraction 2.5.1 Feature Selection 2.5.2 Random Projections 2.6 Modeling 2.6.1 Model Specification 2.6.2 Model Selection and Fitting 2.7 Evaluation 2.8 Strengths and Limitations 2.8.1 The Curse of Dimensionality 3 Security: Basics and Security Analytics 3.1 Basics of Security 3.1.1 Know Thy Enemy – Attackers and Their Motivations 3.1.2 Security Goals 3.2 Mechanisms for Ensuring Security Goals 3.2.1 Confidentiality 3.2.2 Integrity 3.2.3 Availability 3.2.4 Authentication 3.2.5 Access Control 3.2.6 Accountability 3.2.7 Non-repudiation 3.3 Threats, Attacks and Impacts 3.3.1 Passwords 3.3.2 Malware 3.3.3 Spam, Phishing and its Variants 3.3.4 Intrusions 3.3.5 Internet Surfing 3.3.6 System Maintenance and Firewalls 3.3.7 Other Vulnerabilities 3.3.8 Protecting Against Attacks 3.4 Applications of Data Science to Security Challenges 3.4.1 Cybersecurity Datasets 3.4.2 Data Science Applications 3.4.3 Passwords 3.4.4 Malware 3.4.5 Intrusions 3.4.6 Spam/Phishing 3.4.7 Credit Card Fraud/Financial Fraud 3.4.8 Opinion Spam 3.4.9 Denial of Service 3.5 Security Analytics and Why Do We Need It4 Statistics 4.1 Probability Density Estimation 4.2 Models 4.2.1 Poisson 4.2.2 Uniform 4.2.3 Normal 4.3 Parameter Estimation 4.3.1 The Bias-Variance Trade-Off 4.4 The Law of Large Numbers and the Central Limit Theorem 4.5 Confidence Intervals 4.6 Hypothesis Testing 4.7 Bayesian Statistics 4.8 Regression 4.8.1 Logistic Regression 4.9 Regularization 4.10 Principal Components 4.11 Multidimensional Scaling 4.12 Procrustes 4.13 Nonparametric Statistics 4.14 Time Series 5 Data Mining – Unsupervised Learning 5.1 Data Collection 5.2 Types of Data and Operations 5.2.1 Properties of Datasets 5.3 Data Exploration and Preprocessing 5.3.1 Data Exploration 5.3.2 Data Preprocessing/Wrangling 5.4 Data Representation 5.5 Association Rule Mining 5.5.1 Variations on the Apriori Algorithm 5.6 Clustering 5.6.1 Partitional Clustering 5.6.2 Choosing K 5.6.3 Variations on K-means Algorithm 5.6.4 Hierarchical Clustering 5.6.5 Other Clustering Algorithms 5.6.6 Measuring the Clustering Quality 5.6.7 Clustering Miscellany: Clusterability, Robustness, Incremental, 5.7 Manifold Discovery 5.7.1 Spectral Embedding 5.8 Anomaly Detection 5.8.1 Statistical Methods 5.8.2 Distance-based Outlier Detection 5.8.3 kNN based approach 5.8.4 Density-based Outlier Detection 5.8.5 Clustering-based Outlier Detection 5.8.6 One-class learning based Outliers 5.9 Security Applications and Adaptations 5.9.1 Data Mining for Intrusion Detection 5.9.2 Malware Detection 5.9.3 Stepping-stone Detection 5.9.4 Malware Clustering 5.9.5 Directed Anomaly Scoring for Spear Phishing Detection 5.10 Concluding Remarks and Further Reading 6 Machine Learning – Supervised Learning 6.1 Fundamentals of Supervised Learning 6.2 The Bayes Classifier 6.2.1 Naïve Bayes6.3 Nearest Neighbors Classifiers 6.4 Linear Classifiers 6.5 Decision Trees and Random Forests 6.5.1 Random Forest 6.6 Support Vector Machines 6.7 Semi-Supervised Classification 6.8 Neural Networks and Deep Learning 6.8.1 Perceptron 6.8.2 Neural Networks 6.8.3 Deep Networks 6.9 Topological Data Analysis 6.10 Ensemble Learning 6.10.1 Majority 6.10.2 Adaboost 6.11 One-class Learning 6.12 Online Learning 6.13 Adversarial Machine Learning 6.13.1 Adversarial Examples 6.13.2 Adversarial Training 6.13.3 Adversarial Generation 6.13.4 Beyond Continuous Data 6.14 Evaluation of Machine Learning 6.14.1 Cost-sensitive Evaluation 6.14.2 New Metrics for Unbalanced Datasets 6.15 Security Applications and Adaptations 6.15.1 Intrusion Detection 6.15.2 Malware Detection 6.15.3 Spam and Phishing Detection 6.16 For Further Reading 7 Text Mining 7.1 Tokenization 7.2 Preprocessing 7.3 Bag-Of-Words 7.4 Vector space model 7.4.1 Weighting 7.5 Latent Semantic Indexing 7.6 Embedding 7.7 Topic Models: Latent Dirichlet Allocation 7.8 Sentiment Analysis 8 Natural Language Processing 8.1 Challenges of NLP 8.2 Basics of Language Study and NLP Techniques 8.3 Text Preprocessing 8.4 Feature Engineering on Text Data 8.4.1 Morphological, Word and Phrasal Features 8.4.2 Clausal and Sentence Level Features 8.4.3 Statistical Features 8.5 Corpus-based Analysis 8.6 Advanced NLP Tasks 8.6.1 Part of Speech Tagging 8.6.2 Word sense Disambiguation 8.6.3 Language Modeling 8.6.4 Topic Modeling 8.7 Sequence to Sequence Tasks 8.8 Knowledge Bases and Frameworks 8.9 Natural Language Generation 8.10 Issues with Pipelining 8.11 Security Applications of NLP 8.11.1 Password Checking 8.11.2 Email Spam Detection 8.11.3 Phishing Email Detection 8.11.4 Malware Detection 8.11.5 Attack Generation 9 Big Data Techniques and Security 9.1 Key terms 9.2 Ingesting the Data 9.3 Persistent Storage 9.4 Computing and Analyzing 9.5 Techniques for Handling Big Data 9.6 Visualizing 9.7 Streaming Data 9.8 Big Data Security 9.8.1 Implications of Big Data Characteristics on Security and Privacy 9.8.2 Mechanisms for Big Data Security Goals A Linear Algebra Basics A.1 Vectors A.2 Matrices A.2.1 Eigenvectors and Eigenvalues A.2.2 The Singular Value Decomposition B Graphs B.1 Graph Invariants B.2 The Laplacian C Probability C.1 Probability C.1.1 Conditional Probability and Bayes’ Rule C.1.2 Base Rate Fallacy C.1.3 Expected Values and Moments C.1.4 Distribution Functions and Densities C.2 Models C.2.1 Bernoulli and Binomial C.2.2 Multinomial C.2.3 Uniform Bibliography Author Index Index

About the Author :
Rakesh Verma is a professor of computer science at the University of Houston where he is leading a research group that applies reasoning and data science to cybersecurity challenges. He teaches a course on security analytics that includes some of the material here. Since 2015, he has been co-organizing and editing the proceedings of the ACM International Workshop on Security and Privacy Analytics. He is an editor of Frontiers of Big Data in the Cybersecurity Area, an ACM Distinguished Speaker (2011-2018), and the winner of two Best Paper Awards. He received the Lifetime Mentoring Award from the University of Houston and he is a Fulbright Senior Specialist in Computer Science. David Marchette is a principal scientist at the Naval Surface Warfare Center, Dahlgren Division where he is responsible for leading basic and applied research projects in computational statistics, graph theory, network analysis, pattern recognition, computer intrusion detection, and text analysis. He is a fellow of the American Statistical Association (ASA) and the American Association for the Advancement of Science (AAAS) and an elected member of the International Statistical Institute (ISI).


Best Sellers


Product Details
  • ISBN-13: 9781000727654
  • Publisher: Taylor & Francis Ltd
  • Publisher Imprint: Chapman & Hall/CRC
  • Language: English
  • ISBN-10: 1000727653
  • Publisher Date: 27 Nov 2019
  • Binding: Digital (delivered electronically)
  • Series Title: Chapman & Hall/CRC Data Science Series


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Cybersecurity Analytics: (Chapman & Hall/CRC Data Science Series)
Taylor & Francis Ltd -
Cybersecurity Analytics: (Chapman & Hall/CRC Data Science Series)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Cybersecurity Analytics: (Chapman & Hall/CRC Data Science Series)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!