Stabilization of Linear Systems
Home > Mathematics and Science Textbooks > Mathematics > Applied mathematics > Stabilization of Linear Systems: (Systems & Control: Foundations & Applications)
Stabilization of Linear Systems: (Systems & Control: Foundations & Applications)

Stabilization of Linear Systems: (Systems & Control: Foundations & Applications)


     0     
5
4
3
2
1



Available


X
About the Book

One of the main problems in control theory is the stabilization problem consisting of finding a feedback control law ensuring stability; when the linear approximation is considered, the nat­ ural problem is stabilization of a linear system by linear state feedback or by using a linear dynamic controller. This prob­ lem was intensively studied during the last decades and many important results have been obtained. The present monograph is based mainly on results obtained by the authors. It focuses on stabilization of systems with slow and fast motions, on stabilization procedures that use only poor information about the system (high-gain stabilization and adaptive stabilization), and also on discrete time implementa­ tion of the stabilizing procedures. These topics are important in many applications of stabilization theory. We hope that this monograph may illustrate the way in which mathematical theories do influence advanced technol­ ogy. This book is not intended to be a text book nor a guide for control-designers. In engineering practice, control-design is a very complex task in which stability is only one of the re­ quirements and many aspects and facets of the problem have to be taken into consideration. Even if we restrict ourselves to stabilization, the book does not provide just recipes, but it fo­ cuses more on the ideas lying behind the recipes. In short, this is not a book on control, but on some mathematics of control.

Table of Contents:
1. Introduction.- 1.1 Stability Concepts: The Problem of Stabilization.- 1.2 Linear Systems with Constant Coefficients: The Theorem on Stability by the Linear Approximation.- 1.3 An Overview of Some Stabilization Problems.- Notes and References.- 2. Stabilization of Linear Systems.- 2.1 Controllability.- 2.2 Stabilizability: Stabilization Algorithms.- 2.3 Observability and Detectability: State Estimators: A Parametrization of Stabilizing Controllers.- 2.4 Liapunov Equations.- 2.5 Optimal Stabilization of Linear Systems: The Kalman-Lurie-Yakubovich-Popov Equations.- 2.6 Estimate of the Cost Associated with a Stabilizing Feedback Control: Loss in Performance Due to the Use of a Dynamic Controller.- 2.7 Stabilization with Disturbance Attenuation.- Notes and References.- 3. Stabilization of Linear Systems with Two Time Scales.- 3.1 Separation of Time Scales.- 3.2 Controllability and Stabilizability.- 3.3 State Estimators.- 3.4 Optimal Stabilization for Systems with Two Time Scales.- Notes and References.- 4. High-Gain Feedback Stabilization of Linear Systems.- 4.1 An Example.- 4.2 Square Systems with Minimum Phase.- 4.3 Invariant Zeros of a Linear System.- 4.4 Systems with Stable Invariant Zeros and with rank CB = rank C = p.- 4.5 High-Gain Feedback Stabilization of Linear Systems with Higher Relative Degree.- 4.6 The Special Popov Form of Linear Systems.- 4.7 High-Gain Stabilization of Linear Systems: The General Case.- Notes and References.- 5. Adaptive Stabilization and Identification.- 5.1 Adaptive Stabilization in the Fundamental Case.- 5.2 Adaptive Stabilization in the Case of Unmodeled Fast Dynamics.- 5.3 Asymptotic Structure of the Invariant Zeros of a System with Two Time Scales and Adaptive Stabilization.- 5.4 Adaptive Stabilization of Some Linear Systems of Relative Degree Two.- 5.5 An Algorithm of Adaptive Identification.- Notes and References.- 6. Discrete Implementation of Stabilization Procedures.- 6.1 Discrete Time Implementation of a State Feedback Control.- 6.2 Discrete-Time Implementation of a Stabilizing Dynamic Controller.- 6.3 Performance Estimates.- 6.4 Discrete Implementation of a Linear Feedback Control for Systems with Two Time Scales.- 6.5 Discrete Implementation of a High-Gain Feedback Control.- 6.6 Discrete Implementation of the Adaptive Stabilization Algorithm.- Notes and References.

Review :
"This book is a very clear and comprehensive exposition of several aspects of linear control theory connected with the stabilizability problems. The first chapter introduces the basic notions of stability and the problem of stabilization by means of feedback. The interest in the linear case is motivated by the theorem of stability for the first approximation. Chapter 2 is devoted to finite-dimensional, time-continuous, time-invariant linear systems. First, the authors discuss some classical concepts, like controllability, stabilizability, observability, detectability and their relationship. Moreover, optimality and stabilization are related by means of an interesting version of the Kalman-Lurie-Yakubovich-Popov equation. Finally, the authors consider state estimators and stabilization with disturbance attenuation. A similar theory is developed in Chapter 3, for systems with two time scales (singularly perturbed systems) that is systems with fast and slow components. Chapter 4 deals with high-gain stabilization of minimum phase systems, while Chapter 5 is concerned with adaptive stabilization and identification. In the final chapter, the authors study stabilization of systems where the feedback is implemented by means of a sampling technique (digital control)." --Zentralblatt Math


Best Sellers


Product Details
  • ISBN-13: 9780817639709
  • Publisher: Birkhauser Boston Inc
  • Publisher Imprint: Birkhauser Boston Inc
  • Height: 235 mm
  • No of Pages: 308
  • Returnable: Y
  • Width: 155 mm
  • ISBN-10: 0817639705
  • Publisher Date: 01 Jun 1999
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Series Title: Systems & Control: Foundations & Applications


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Stabilization of Linear Systems: (Systems & Control: Foundations & Applications)
Birkhauser Boston Inc -
Stabilization of Linear Systems: (Systems & Control: Foundations & Applications)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Stabilization of Linear Systems: (Systems & Control: Foundations & Applications)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!