Hot-Carrier Reliability of MOS VLSI Circuits
Home > Science, Technology & Agriculture > Electronics and communications engineering > Electronics engineering > Electronics: circuits and components > Hot-Carrier Reliability of MOS VLSI Circuits: (227 The Springer International Series in Engineering and Computer Science)
Hot-Carrier Reliability of MOS VLSI Circuits: (227 The Springer International Series in Engineering and Computer Science)

Hot-Carrier Reliability of MOS VLSI Circuits: (227 The Springer International Series in Engineering and Computer Science)

|
     0     
5
4
3
2
1




Available


About the Book

As the complexity and the density of VLSI chips increase with shrinking design rules, the evaluation of long-term reliability of MOS VLSI circuits is becoming an important problem. The assessment and improvement of reliability on the circuit level should be based on both the failure mode analysis and the basic understanding of the physical failure mechanisms observed in integrated circuits. Hot-carrier induced degrada­ tion of MOS transistor characteristics is one of the primary mechanisms affecting the long-term reliability of MOS VLSI circuits. It is likely to become even more important in future generation chips, since the down­ ward scaling of transistor dimensions without proportional scaling of the operating voltage aggravates this problem. A thorough understanding of the physical mechanisms leading to hot-carrier related degradation of MOS transistors is a prerequisite for accurate circuit reliability evaluation. It is also being recognized that important reliability concerns other than the post-manufacture reliability qualification need to be addressed rigorously early in the design phase. The development and use of accurate reliability simulation tools are therefore crucial for early assessment and improvement of circuit reliability : Once the long-term reliability of the circuit is estimated through simulation, the results can be compared with predetermined reliability specifications or limits. If the predicted reliability does not satisfy the requirements, appropriate design modifications may be carried out to improve the resistance of the devices to degradation.

Table of Contents:
1. Introduction.- 1.1. The Concept of IC Reliability.- 1.2. Design-for-Reliability.- 1.3. VLSI Reliability Problems.- 1.4. Gradual Degradation versus Catastrophic Failures.- 1.5. Hot-Carrier Effects.- 1.6. Overview of the Book.- References.- 2. Oxide Degradation Mechanisms in Mos Transistors.- 2.1. Introduction.- 2.2. MOS Transistor: A Qualitative View.- 2.3. The Nature of Gate Oxide Damage in MOSFETs.- 2.4. Injection of Hot Carriers into Gate Oxide.- 2.5. Oxide Traps and Charge Trapping.- 2.6. Interface Trap Generation.- 2.7. Bias Dependence of Degradation Mechanisms.- 2.8. Degradation under Dynamic Operating Conditions.- 2.9. Effects of Hot-Carrier Damage on Device Characteristics.- 2.10. Hot-Carrier Induced Degradation of pMOS Transistors.- References.- 3.Modeling of Degradation Mechanisms.- 3.1. Preliminary Remarks.- 3.2. Quasi-Elastic Scattering Current Model.- 3.3. Charge (Electron) Trapping Model.- 3.4. Impact Ionization Current Model.- 3.5. Interface Trap Generation Model.- 3.6. Trap Generation under Dynamic Operating Conditions.- References.- 4. Modeling of Damaged Mosfets.- 4.1. Introduction.- 4.2. Representation of Hot-Carrier Induced Oxide Damage.- 4.3. Two-Dimensional Modeling of Damaged MOSFETs.- 4.4. Empirical One-Dimensional Modeling.- 4.5. An Analytical Damaged MOSFET Model.- 4.6. Consideration of Channel Velocity Limitations.- 4.7. Pseudo Two-Dimensional Modeling of Damaged MOSFETs.- 4.8. Table-Based Modeling Approaches.- References.- 5. Transistor-Level Simulation for Circuit Reliability.- 5.1. Introduction.- 5.2. Review of Circuit Reliability Simulation Tools.- 5.3. Circuit Reliability Simulation Using iSMILE: A Case Study.- 5.4. Circuit Simulation Examples.- 5.5. Evaluation of the Simulation Algorithm.- 5.6. Identification of Critical Devices.- References.- 6. Fast Timing Simulation for Circuit Reliability.- 6.1. Introduction.- 6.2. ILLIADS-R: A Fast Timing and Reliability Simulator.- 6.3. Fast Dynamic Reliability Simulation.- 6.4. Circuit Simulation Examples with ILLIADS-R.- 6.5. iDSIM2: Hierarchical Circuit Reliability Simulation.- References.- 7. Macromodeling of Hot-Carrier Induced Degradation in Mos Circuits.- 7.1. Introduction.- 7.2. Macromodel Development: Starting Assumptions.- 7.3. Degradation Macromodel for CMOS Inverters.- 7.4. Degradation Macromodel for nMOS Pass Gates.- 7.5. Application of the Macromodel to Inverter Chain Circuits.- 7.6. Application of the Macromodel to CMOS Logic Circuits.- References.- 8. Circuit Design for Reliability.- 8.1. Introduction.- 8.2. Device-Level Measures.- 8.3. Circuit-Level Measures.- 8.4. Rule-Based Diagnosis of Circuit Reliability.- References.


Best Sellers


Product Details
  • ISBN-13: 9780792393528
  • Publisher: Springer
  • Publisher Imprint: Springer
  • Height: 235 mm
  • No of Pages: 212
  • Returnable: N
  • Width: 155 mm
  • ISBN-10: 079239352X
  • Publisher Date: 30 Jun 1993
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Series Title: 227 The Springer International Series in Engineering and Computer Science


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Hot-Carrier Reliability of MOS VLSI Circuits: (227 The Springer International Series in Engineering and Computer Science)
Springer -
Hot-Carrier Reliability of MOS VLSI Circuits: (227 The Springer International Series in Engineering and Computer Science)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Hot-Carrier Reliability of MOS VLSI Circuits: (227 The Springer International Series in Engineering and Computer Science)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!