Efficient Dynamic Simulation of Robotic Mechanisms - Bookswagon
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
37%
Efficient Dynamic Simulation of Robotic Mechanisms: (203 The Springer International Series in Engineering and Computer Science)

Efficient Dynamic Simulation of Robotic Mechanisms: (203 The Springer International Series in Engineering and Computer Science)


     0     
5
4
3
2
1



Available


X
About the Book

"Efficient Dynamic Simulation of Robotic Mechanisms" presents computationally efficient algorithms for the dynamic simulation of closed-chain robotic systems. In particular, the simulation of single closed chains and simple closed-chain mechanisms is investigated in detail. Single closed chains are common in many applications, including industrial assembly operations, hazardous remediation, and space exploration. Simple closed-chain mechanisms include such familiar configurations as multiple manipulators moving a common load, dexterous hands and multilegged vehicles. The efficient dynamics simulation of these systems is often required for testing an advanced control scheme prior to its implementation, to aid a human operator during remote teleoperation, or to improve system performance. In conjunction with the dynamic simulation algorithms, efficient algorithms are also derived for the computation of the joint space and operational space inertia matrices of a manipulator. The manipulator inertia matrix is a significant components of any robot dynamics formulation and plays an important role in both simulation and control. The efficient computation of the inertia matrix is highly desirable for real-time implementation of robot dynamics algorithms. Several alternate formulations are provided for each inertia matrix. Computational efficiency in the algorithm is achieved by several means, including the development of recursive formulations and the use of efficient spatial transformations and mathematics. All algorithms are derived and presented in a convenient tabular format using a modified form of spatial notation, a six-dimensional vector notation which greatly simplifies the presentation and analysis of multibody dunamics. Basic definitions and fundamental principles required to use and understand this notation are provided. The implementation of the efficient spatial transformations is also discussed. As a means of evaluating effiency, the number of scalar operations (multiplications and addition) required for each algorithm is tabulated after its derivation. Specification of the computational complexity of each algorithm in this manner makes comparison with other algorithms both easy and convenient. The algorithms presented in this work are among the most efficient robot dynamics algorithms available at this time. In addition to computational efficiency,special emphasis is also placed on retaining as much physical insight as possible during algorithm derivation. The algorithms are easy to follow and understand, whether the reader is a robotics novice or a seasoned specialist.

Table of Contents:
1 Introduction.- 1.1 Scope and Contents.- 1.2 The Dynamic Simulation Problem.- 1.3 Direct Dynamics for Robotic Systems.- 1.4 Dynamics of Simple Closed-Chain Mechanisms.- 1.5 Organization and Reader’s Guide.- 2 System Modelling and Notation.- 2.1 Introduction.- 2.2 Kinematic and Dynamic Parameters of a Robotic Mechanism.- 2.3 General Joint Model.- 2.4 Summary.- 3 Alternate Formulations for the Joint Space Inertia Matrix.- 3.1 Introduction.- 3.2 Previous Work.- 3.3 Additional Notation and Background.- 3.4 The Algorithms.- 3.5 Efficient Transformation of Spatial Quantities.- 3.6 Computational Requirements.- 3.7 Summary and Conclusions.- 4 Alternate Formulations for the Operational Space Inertia Matrix.- 4.1 Introduction.- 4.2 Previous Work.- 4.3 The Operational Space Formulation.- 4.4 The Operational Space Inertia Matrix.- 4.5 The Algorithms.- 4.6 Computational Requirements.- 4.7 Summary and Conclusions.- 5 Efficient Dynamic Simulation of A Single Closed Chain.- 5.1 Introduction.- 5.2 Previous Work.- 5.3 Equations of Motion and Joint Accelerations.- 5.4 Acceleration of the End Effector.- 5.5 Tip Constraints.- 5.6 Dynamic Simulation Algorithm for a Single Closed Chain.- 5.7 Computational Requirements.- 5.8 Summary and Conclusions.- 6 Efficient Dynamic Simulation of Simple Closed-Chain Mechanisms.- 6.1 Introduction.- 6.2 Previous Work.- 6.3 System Configuration and Problem Statement.- 6.4 System Dynamic Equations.- 6.5 Dynamic Simulation Algorithm for Simple Closed-Chain Mechanisms.- 6.6 An Alternate Form of the Simulation Algorithm.- 6.7 Computational Requirements.- 6.8 Summary and Conclusions.- 6.9 A Final Note.

Review :
` The case for recommending this book is that it represents a state of development in the formulation of efficient algorithms and that it holds a record that specialists can argue over and try to beat. ' Proceedings of the Institution of Mechanical Engineers, 208


Best Sellers


Product Details
  • ISBN-13: 9780792392866
  • Publisher: Kluwer Academic Publishers
  • Publisher Imprint: Kluwer Academic Publishers
  • Height: 235 mm
  • No of Pages: 136
  • Returnable: Y
  • Width: 155 mm
  • ISBN-10: 0792392868
  • Publisher Date: 30 Nov 1992
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Series Title: 203 The Springer International Series in Engineering and Computer Science


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Efficient Dynamic Simulation of Robotic Mechanisms: (203 The Springer International Series in Engineering and Computer Science)
Kluwer Academic Publishers -
Efficient Dynamic Simulation of Robotic Mechanisms: (203 The Springer International Series in Engineering and Computer Science)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Efficient Dynamic Simulation of Robotic Mechanisms: (203 The Springer International Series in Engineering and Computer Science)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!