Why Does E=mc2?
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Physics > Relativity physics > Why Does E=mc2?: (And Why Should We Care?)
Why Does E=mc2?: (And Why Should We Care?)

Why Does E=mc2?: (And Why Should We Care?)


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

The most accessible, entertaining, and enlightening explanation of the best-known physics equation in the world, as rendered by two of today’s leading scientists. Professor Brian Cox and Professor Jeff Forshaw go on a journey to the frontier of 21st century science to consider the real meaning behind the iconic sequence of symbols that make up Einstein’s most famous equation, E=mc2. Breaking down the symbols themselves, they pose a series of questions: What is energy? What is mass? What has the speed of light got to do with energy and mass? In answering these questions, they take us to the site of one of the largest scientific experiments ever conducted. Lying beneath the city of Geneva, straddling the Franco-Swiss boarder, is a 27 km particle accelerator, known as the Large Hadron Collider. Using this gigantic machine—which can recreate conditions in the early Universe fractions of a second after the Big Bang—Cox and Forshaw will describe the current theory behind the origin of mass. Alongside questions of energy and mass, they will consider the third, and perhaps, most intriguing element of the equation: 'c' - or the speed of light. Why is it that the speed of light is the exchange rate? Answering this question is at the heart of the investigation as the authors demonstrate how, in order to truly understand why E=mc2, we first must understand why we must move forward in time and not backwards and how objects in our 3-dimensional world actually move in 4-dimensional space-time. In other words, how the very fabric of our world is constructed. A collaboration between two of the youngest professors in the UK, Why Does E=mc2? promises to be one of the most exciting and accessible explanations of the theory of relativity in recent years.

About the Author :
Brian Cox is a professor of particle physicist and Royal Society University Research Fellow at the University of Manchester. He divides his time between Manchester in the UK and the CERN laboratory in Geneva, where he heads an international project to upgrade the giant ATLAS and CMS detectors at the Large Hadron Collider. He has received many awards for his work promoting science, including being elected an International Fellow of the Explorers Club in 2002, an organization whose members include Neil Armstrong and Chuck Yeager. He is also a popular presenter on TV and radio, with credits which including a six-part series on Einstein for BBC Radio 4, 3 BBC Horizon programs on Gravity, Time and Nuclear Fusion, and a BBC4 documentary about the LHC at CERN, “The Big Bang Machine”. He was the Science Advisor on Danny Boyle's movie, the science-fiction thriller Sunshine. Brian also has an unorthodox background in the music business, having toured the world with various bands and played keyboard with D:REAM, who had several UK Top 10 hits including Things Can Only Get Better (re-released & used as Tony Blair's election anthem back in 1997. Jeff Forshaw is professor of theoretical physics at the University of Manchester, specializing in the physics of elementary particles. He was awarded the Institute of Physics Maxwell Medal in 1999 for outstanding contributions to theoretical physics. He graduated from Oxford University and gained a PhD from Manchester University. From 1992-1995 he worked in Professor Frank Close's group at the Rutherford Appleton Laboratory before returning to Manchester in 1995. Jeff is an enthusiastic lecturer and currently teaches Einstein's Theory of Relativity to first year undergraduates. He has co-writing an undergraduate textbook on relativity for Wiley and he is the author of an advanced level monograph on particle physics for Cambridge University Press. Cox and Forshaw began collaborating on scientific papers in 1998, and have published on topics ranging from Pomerons to Higgs Bosons. Their most successful paper to date deals with physics at the Large Hadron Collider in the absence of a Higgs particle.


Best Sellers


Product Details
  • ISBN-13: 9780786752164
  • Publisher: Hachette Books
  • Publisher Imprint: Da Capo Press Inc
  • Language: English
  • Sub Title: (And Why Should We Care?)
  • ISBN-10: 0786752165
  • Publisher Date: 27 May 2014
  • Binding: Digital (delivered electronically)
  • No of Pages: 264


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Why Does E=mc2?: (And Why Should We Care?)
Hachette Books -
Why Does E=mc2?: (And Why Should We Care?)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Why Does E=mc2?: (And Why Should We Care?)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!