Quantum Statistical Mechanics in Classical Phase Space
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Physics > Materials / States of matter > Condensed matter physics > Quantum Statistical Mechanics in Classical Phase Space: (IOP ebooks)
Quantum Statistical Mechanics in Classical Phase Space: (IOP ebooks)

Quantum Statistical Mechanics in Classical Phase Space: (IOP ebooks)


     0     
5
4
3
2
1



International Edition


X
About the Book

Quantum and classical results are often presented as being dependent upon separate postulates as if the two are distinct and unrelated, and there is little attempt to show how the quantum implies the classical. The transformation to classical phase space gives researchers access to a range of algorithms derived from classical statistical mechanics that promise results on much more favourable numerical terms. Quantum Statistical Mechanics in Classical Phase Space offers not just a new computational approach to condensed matter systems, but also a unique conceptual framework for understanding the quantum world and collective molecular behaviour. A formally exact transformation, this revolutionary approach goes beyond the quantum perturbation of classical condensed matter to applications that lie deep in the quantum regime. It offers scalable computational algorithms and tractable approximations tailored to specific systems. Concrete examples serve to validate the general approach and demonstrate new insights. For example, the computer simulations and analysis of the λ-transition in liquid helium provide a new molecular-level explanation of Bose-Einstein condensation and a quantitative theory for superfluid flow. The intriguing classical phase space formulation in this book offers students and researchers a range of new computational algorithms and analytic approaches. It offers not just an efficient computational approach to quantum condensed matter systems, but also an exciting perspective on how the classical world that we observe emerges from the quantum mechanics that govern the behaviour of atoms and molecules. The applications, examples, and physical insights foreshadow new discoveries in quantum condensed matter systems.

Table of Contents:
Author Biography 1 Introduction 2 Wave Packet Formulation 3 Symmetrization Factor and Permutation Loop Expansion 4 Applications with Single Particle States 5 The λ-Transition and Superfluidity in Liquid Helium 6 Further Applications 7 Phase Space Formalism for the Partition Function and Averages 8 High-Temperature Expansions for the Commutation Function 9 Nested Commutator Expansion for the Commutation Function 10 Local State Expansion for the Commutation Function 11 Many-Body Expansion for the Commutation Function 12 Density Matrix and Partition Function  

About the Author :
Phil Attard researches broadly in statistical mechanics, quantum mechanics, thermodynamics, and colloid science. He has held academic positions in Australia, Europe, and North America, and he was a Professorial Research Fellow of the Australian Research Council. He has authored some 120 papers, 10 review articles, and 4 books, with over 7000 citations. As an internationally recognized researcher, he has made seminal contributions to the theory of electrolytes and the electric double layer, to measurement techniques for atomic force microscopy and colloid particle interactions, and to computer simulation and integral equation algorithms for condensed matter. Attard is perhaps best known for his discovery of nanobubbles and for establishing their nature. Recent research has focused on non-equilibrium systems. He has discovered a new entropy --the second entropy-- as the basis for non-equilibrium thermodynamics, hydrodynamics, and chemical kinetics, and he has derived the probability distribution for non-equilibrium statistical mechanics. The theory provides a coherent approach to non-equilibrium systems and to irreversible processes, and it has led to the development of stochastic molecular dynamics and non-equilibrium Monte Carlo computer simulation algorithms. Attard has formulated quantum statistical mechanics in classical phase space, for its conceptual insight into quantum mechanics, for its account of the transition to our classical world, and for its potential for efficient computational approaches to many-body condensed matter systems. Also, it is different, which is where discovery is to be found.


Best Sellers


Product Details
  • ISBN-13: 9780750340533
  • Publisher: Institute of Physics Publishing
  • Publisher Imprint: Institute of Physics Publishing
  • Height: 254 mm
  • No of Pages: 348
  • Spine Width: 21 mm
  • Width: 178 mm
  • ISBN-10: 0750340533
  • Publisher Date: 30 Nov 2021
  • Binding: Hardback
  • Language: English
  • Series Title: IOP ebooks
  • Weight: 821 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Quantum Statistical Mechanics in Classical Phase Space: (IOP ebooks)
Institute of Physics Publishing -
Quantum Statistical Mechanics in Classical Phase Space: (IOP ebooks)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Quantum Statistical Mechanics in Classical Phase Space: (IOP ebooks)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!