Buy Stability and Stabilization by William J. Terrell
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Mathematics > Calculus and mathematical analysis > Differential calculus and equations > Stability and Stabilization: An Introduction
Stability and Stabilization: An Introduction

Stability and Stabilization: An Introduction


     0     
5
4
3
2
1



International Edition


X
About the Book

Stability and Stabilization is the first intermediate-level textbook that covers stability and stabilization of equilibria for both linear and nonlinear time-invariant systems of ordinary differential equations. Designed for advanced undergraduates and beginning graduate students in the sciences, engineering, and mathematics, the book takes a unique modern approach that bridges the gap between linear and nonlinear systems. Presenting stability and stabilization of equilibria as a core problem of mathematical control theory, the book emphasizes the subject's mathematical coherence and unity, and it introduces and develops many of the core concepts of systems and control theory. There are five chapters on linear systems and nine chapters on nonlinear systems; an introductory chapter; a mathematical background chapter; a short final chapter on further reading; and appendixes on basic analysis, ordinary differential equations, manifolds and the Frobenius theorem, and comparison functions and their use in differential equations.The introduction to linear system theory presents the full framework of basic state-space theory, providing just enough detail to prepare students for the material on nonlinear systems. * Focuses on stability and feedback stabilization * Bridges the gap between linear and nonlinear systems for advanced undergraduates and beginning graduate students * Balances coverage of linear and nonlinear systems * Covers cascade systems * Includes many examples and exercises

Table of Contents:
List of Figures xi Preface xiii Chapter 1: Introduction 1 1.1 Open Loop Control 1 1.2 The Feedback Stabilization Problem 2 1.3 Chapter and Appendix Descriptions 5 1.4 Notes and References 11 Chapter 2: Mathematical Background 12 2.1 Analysis Preliminaries 12 2.2 Linear Algebra and Matrix Algebra 12 2.3 Matrix Analysis 17 2.4 Ordinary Differential Equations 30 2.4.1 Phase Plane Examples: Linear and Nonlinear 35 2.5 Exercises 44 2.6 Notes and References 48 Chapter 3: Linear Systems and Stability 49 3.1 The Matrix Exponential 49 3.2 The Primary Decomposition and Solutions of LTI Systems 53 3.3 Jordan Form and Matrix Exponentials 57 3.3.1 Jordan Form of Two-Dimensional Systems 58 3.3.2 Jordan Form of n-Dimensional Systems 61 3.4 The Cayley-Hamilton Theorem 67 3.5 Linear Time Varying Systems 68 3.6 The Stability Definitions 71 3.6.1 Motivations and Stability Definitions 71 3.6.2 Lyapunov Theory for Linear Systems 73 3.7 Exercises 77 3.8 Notes and References 81 Chapter 4: Controllability of Linear Time Invariant Systems 82 4.1 Introduction 82 4.2 Linear Equivalence of Linear Systems 84 4.3 Controllability with Scalar Input 88 4.4 Eigenvalue Placement with Single Input 92 4.5 Controllability with Vector Input 94 4.6 Eigenvalue Placement with Vector Input 96 4.7 The PBH Controllability Test 99 4.8 Linear Time Varying Systems: An Example 103 4.9 Exercises 105 4.10 Notes and References 108 Chapter 5: Observability and Duality 109 5.1 Observability, Duality, and a Normal Form 109 5.2 Lyapunov Equations and Hurwitz Matrices 117 5.3 The PBH Observability Test 118 5.4 Exercises 121 5.5 Notes and References 123 Chapter 6: Stabilizability of LTI Systems 124 6.1 Stabilizing Feedbacks for Controllable Systems 124 6.2 Limitations on Eigenvalue Placement 128 6.3 The PBH Stabilizability Test 133 6.4 Exercises 134 6.5 Notes and References 136 Chapter 7: Detectability and Duality 138 7.1 An Example of an Observer System 138 7.2 Detectability, the PBH Test, and Duality 142 7.3 Observer-Based Dynamic Stabilization 145 7.4 Linear Dynamic Controllers and Stabilizers 147 7.5 LQR and the Algebraic Riccati Equation 152 7.6 Exercises 156 7.7 Notes and References 159 Chapter 8: Stability Theory 161 8.1 Lyapunov Theorems and Linearization 161 8.1.1 Lyapunov Theorems 162 8.1.2 Stabilization from the Jacobian Linearization 171 8.1.3 Brockett's Necessary Condition 172 8.1.4 Examples of Critical Problems 173 8.2 The Invariance Theorem 176 8.3 Basin of Attraction 181 8.4 Converse Lyapunov Theorems 183 8.5 Exercises 183 8.6 Notes and References 187 Chapter 9: Cascade Systems 189 9.1 The Theorem on Total Stability 189 9.1.1 Lyapunov Stability in Cascade Systems 192 9.2 Asymptotic Stability in Cascades 193 9.2.1 Examples of Planar Systems 193 9.2.2 Boundedness of Driven Trajectories 196 9.2.3 Local Asymptotic Stability 199 9.2.4 Boundedness and Global Asymptotic Stability 202 9.3 Cascades by Aggregation 204 9.4 Appendix: The Poincar'e-Bendixson Theorem 207 9.5 Exercises 207 9.6 Notes and References 211 Chapter 10: Center Manifold Theory 212 10.1 Introduction 212 10.1.1 An Example 212 10.1.2 Invariant Manifolds 213 10.1.3 Special Coordinates for Critical Problems 214 10.2 The Main Theorems 215 10.2.1 Definition and Existence of Center Manifolds 215 10.2.2 The Reduced Dynamics 218 10.2.3 Approximation of a Center Manifold 222 10.3 Two Applications 225 10.3.1 Adding an Integrator for Stabilization 226 10.3.2 LAS in Special Cascades: Center Manifold Argument 228 10.4 Exercises 229 10.5 Notes and References 231 Chapter 11: Zero Dynamics 233 11.1 The Relative Degree and Normal Form 233 11.2 The Zero Dynamics Subsystem 244 11.3 Zero Dynamics and Stabilization 248 11.4 Vector Relative Degree of MIMO Systems 251 11.5 Two Applications 254 11.5.1 Designing a Center Manifold 254 11.5.2 Zero Dynamics for Linear SISO Systems 257 11.6 Exercises 263 11.7 Notes and References 267 Chapter 12: Feedback Linearization of Single-Input Nonlinear Systems 268 12.1 Introduction 268 12.2 Input-State Linearization 270 12.2.1 Relative Degree n 271 12.2.2 Feedback Linearization and Relative Degree n 272 12.3 The Geometric Criterion 275 12.4 Linearizing Transformations 282 12.5 Exercises 285 12.6 Notes and References 287 Chapter 13: An Introduction to Damping Control 289 13.1 Stabilization by Damping Control 289 13.2 Contrasts with Linear Systems: Brackets, Controllability, Stabilizability 296 13.3 Exercises 299 13.4 Notes and References 300 Chapter 14: Passivity 302 14.1 Introduction to Passivity 302 14.1.1 Motivation and Examples 302 14.1.2 Definition of Passivity 304 14.2 The KYP Characterization of Passivity 306 14.3 Positive Definite Storage 309 14.4 Passivity and Feedback Stabilization 314 14.5 Feedback Passivity 318 14.5.1 Linear Systems 321 14.5.2 Nonlinear Systems 325 14.6 Exercises 327 14.7 Notes and References 330 Chapter 15: Partially Linear Cascade Systems 331 15.1 LAS from Partial-State Feedback 331 15.2 The Interconnection Term 333 15.3 Stabilization by Feedback Passivation 336 15.4 Integrator Backstepping 349 15.5 Exercises 355 15.6 Notes and References 357 Chapter 16: Input-to-State Stability 359 16.1 Preliminaries and Perspective 359 16.2 Stability Theorems via Comparison Functions 364 16.3 Input-to-State Stability 366 16.4 ISS in Cascade Systems 372 16.5 Exercises 374 16.6 Notes and References 376 Chapter 17: Some Further Reading 378 Appendix A: Notation: A Brief Key 381 Appendix B: Analysis in R and Rn 383 B.1 Completeness and Compactness 386 B.2 Differentiability and Lipschitz Continuity 393 Appendix C: Ordinary Differential Equations 393 C.1 Existence and Uniqueness of Solutions 393 C.2 Extension of Solutions 396 C.3 Continuous Dependence 399 Appendix D: Manifolds and the Preimage Theorem; Distributions and the Frobenius Theorem 403 D.1 Manifolds and the Preimage Theorem 403 D.2 Distributions and the Frobenius Theorem 410 Appendix E: Comparison Functions and a Comparison Lemma 420 E.1 Definitions and Basic Properties 420 E.2 Differential Inequality and Comparison Lemma 424 Appendix F: Hints and Solutions for Selected Exercises 430 Bibliography 443 Index 451

About the Author :
William J. Terrell is associate professor of mathematics and applied mathematics at Virginia Commonwealth University. In 2000, he received a Lester R. Ford Award for excellence in expository writing from the Mathematical Association of America.

Review :
"This book takes a unique modern approach that bridges the gap between linear and nonlinear systems... Clear formulated definitions and theorems, correct proofs and many interesting examples and exercises make this textbook very attractive."--Ferenc Szenkovits, Mathematica


Best Sellers


Product Details
  • ISBN-13: 9780691134444
  • Publisher: Princeton University Press
  • Publisher Imprint: Princeton University Press
  • Height: 254 mm
  • No of Pages: 480
  • Sub Title: An Introduction
  • Width: 178 mm
  • ISBN-10: 0691134448
  • Publisher Date: 15 Feb 2009
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Weight: 1083 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Stability and Stabilization: An Introduction
Princeton University Press -
Stability and Stabilization: An Introduction
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Stability and Stabilization: An Introduction

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!