Dynamic Models in Biology
Home > Mathematics and Science Textbooks > Biology, life sciences > Dynamic Models in Biology
Dynamic Models in Biology

Dynamic Models in Biology


     0     
5
4
3
2
1



Available


X
About the Book

From controlling disease outbreaks to predicting heart attacks, dynamic models are increasingly crucial for understanding biological processes. Many universities are starting undergraduate programs in computational biology to introduce students to this rapidly growing field. In Dynamic Models in Biology, the first text on dynamic models specifically written for undergraduate students in the biological sciences, ecologist Stephen Ellner and mathematician John Guckenheimer teach students how to understand, build, and use dynamic models in biology. Developed from a course taught by Ellner and Guckenheimer at Cornell University, the book is organized around biological applications, with mathematics and computing developed through case studies at the molecular, cellular, and population levels. The authors cover both simple analytic models--the sort usually found in mathematical biology texts--and the complex computational models now used by both biologists and mathematicians. Linked to a Web site with computer-lab materials and exercises, Dynamic Models in Biology is a major new introduction to dynamic models for students in the biological sciences, mathematics, and engineering.

Table of Contents:
List of Figures ix List of Tables xiv Preface xvi Chapter 1: What Are Dynamic Models? 1 1.1 Descriptive versus Mechanistic Models 2 1.2 Chinook Salmon 4 1.3 Bathtub Models 6 1.4 Many Bathtubs: Compartment Models 7 1.4.1 Enzyme Kinetics 8 1.4.2 The Modeling Process 11 1.4.3 Pharmacokinetic Models 13 1.5 Physics Models: Running and Hopping 16 1.6 Optimization Models 20 1.7 Why Bother? 21 1.8 Theoretical versus Practical Models 24 1.9 What's Next? 26 1.10 References 28 Chapter 2: Matrix Models and Structured Population Dynamics 31 2.1 The Population Balance Law 32 2.2 Age-Structured Models 33 2.2.1 The Leslie Matrix 34 2.2.2 Warning: Prebreeding versus Postbreeding Models 37 2.3 Matrix Models Based on Stage Classes 38 2.4 Matrices and Matrix Operations 42 2.4.1 Review of Matrix Operations 43 2.4.2 Solution of the Matrix Model 44 2.5 Eigenvalues and a Second Solution of the Model 44 2.5.1 Left Eigenvectors 48 2.6 Some Applications of Matrix Models 49 2.6.1 Why Do We Age? 49 2.6.2 Elasticity Analysis and Conservation Biology 52 2.6.3 How Much Should We Trust These Models? 58 2.7 Generalizing the Matrix Model 59 2.7.1 Stochastic Matrix Models 59 2.7.2 Density-Dependent Matrix Models 61 2.7.3 Continuous Size Distributions 63 2.8 Summary and Conclusions 66 2.9 Appendix 67 2.9.1 Existence and Number of Eigenvalues 67 2.9.2 Reproductive Value 67 2.10 References 68 Chapter 3: Membrane Channels and Action Potentials 71 3.1 Membrane Currents 72 3.1.1 Channel Gating and Conformational States 74 3.2 Markov Chains 77 3.2.1 Coin Tossing 78 3.2.2 Markov Chains 82 3.2.3 The Neuromuscular Junction 86 3.3 Voltage-Gated Channels 90 3.4 Membranes as Electrical Circuits 92 3.4.1 Reversal Potential 94 3.4.2 Action Potentials 95 3.5 Summary 103 3.6 Appendix: The Central Limit Theorem 104 3.7 References 106 Chapter 4: Cellular Dynamics: Pathways of Gene Expression 107 4.1 Biological Background 108 4.2 A Gene Network That Acts as a Clock 110 4.2.1 Formulating a Model 111 4.2.2 Model Predictions 113 4.3 Networks That Act as a Switch 119 4.4 Systems Biology 125 4.4.1 Complex versus Simple Models 129 4.5 Summary 131 4.6 References 132 Chapter 5: Dynamical Systems 135 5.1 Geometry of a Single Differential Equation 136 5.2 Mathematical Foundations: A Fundamental Theorem 138 5.3 Linearization and Linear Systems 141 5.3.1 Equilibrium Points 141 5.3.2 Linearization at Equilibria 142 5.3.3 Solving Linear Systems of Differential Equations 144 5.3.4 Invariant Manifolds 149 5.3.5 Periodic Orbits 150 5.4 Phase Planes 151 5.5 An Example: The Morris-Lecar Model 154 5.6 Bifurcations 160 5.7 Numerical Methods 175 5.8 Summary 181 5.9 References 181 Chapter 6: Differential Equation Models for Infectious Disease 183 6.1 Sir Ronald Ross and the Epidemic Curve 183 6.2 Rescaling the Model 187 6.3 Endemic Diseases and Oscillations 191 6.3.1 Analysis of the SIR Model with Births 193 6.3.2 Summing Up 197 6.4 Gonorrhea Dynamics and Control 200 6.4.1 A Simple Model and a Paradox 200 6.4.2 The Core Group 201 6.4.3 Implications for Control 203 6.5 Drug Resistance 206 6.6 Within-Host Dynamics of HIV 209 6.7 Conclusions 213 6.8 References 214 Chapter 7: Spatial Patterns in Biology 217 7.1 Reaction-Diffusion Models 218 7.2 The Turing Mechanism 223 7.3 Pattern Selection: Steady Patterns 226 7.4 Moving Patterns: Chemical Waves and Heartbeats 232 7.5 References 241 Chapter 8: Agent-Based and Other Computational Models for Complex Systems 243 8.1 Individual-Based Models in Ecology 245 8.1.1 Size-Dependent Predation 245 8.1.2 Swarm 247 8.1.3 Individual-Based Modeling of Extinction Risk 248 8.2 Artificial Life 252 8.2.1 Tierra 253 8.2.2 Microbes in Tierra 255 8.2.3 Avida 257 8.3 The Immune System and the Flu 259 8.4 What Can We Learn from Agent-Based Models? 260 8.5 Sensitivity Analysis 261 8.5.1 Correlation Methods 264 8.5.2 Variance Decomposition 266 8.6 Simplifying Computational Models 269 8.6.1 Separation of Time Scales 269 8.6.2 Simplifying Spatial Models 272 8.6.3 Improving the Mean Field Approximation 276 8.7 Conclusions 277 8.8 Appendix: Derivation of Pair Approximation 278 8.9 References 279 Chapter 9: Building Dynamic Models 283 9.1 Setting the Objective 284 9.2 Building an Initial Model 285 9.2.1 Conceptual Model and Diagram 286 9.3 Developing Equations for Process Rates 291 9.3.1 Linear Rates: When and Why? 291 9.3.2 Nonlinear Rates from "First Principles" 293 9.3.3 Nonlinear Rates from Data: Fitting Parametric Models 294 9.3.4 Nonlinear Rates from Data: Selecting a Parametric Model 298 9.4 Nonlinear Rates from Data: Nonparametric Models 302 9.4.1 Multivariate Rate Equations 304 9.5 Stochastic Models 306 9.5.1 Individual-Level Stochasticity 306 9.5.2 Parameter Drift and Exogenous Shocks 309 9.6 Fitting Rate Equations by Calibration 311 9.7 Three Commandments for Modelers 314 9.8 Evaluating a Model 315 9.8.1 Comparing Models 317 9.9 References 320 Index 323

About the Author :
Stephen P. Ellner is Professor of Ecology and Evolutionary Biology at Cornell University. He has published numerous papers on subjects from measles epidemics to bumblebee behavior, in publications including "Science" and "Nature". John Guckenheimer is Professor of Mathematics at Cornell University. He is the coauthor of "Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields".

Review :
"What is remarkable about Dynamic Models in Biology is that it truly speaks to students of biological sciences. It puts biology first, and then tries to explain how mathematical tools can explain biological phenomena. Nothing else I've seen does this anywhere near as well. The authors have combined their experience to produce and excellent textbook."--Bill Satzer, MAA Reviews "This is a great book and I expect that it will play an important role in the teaching of mathematical biology and the development of the next generation of mathematical biologists for many years to come."--Marc Mangel, SIAM Review "Dynamic Models in Biology stands apart from existing textbooks in mathematical biology largely because of its interdisciplinary approach and its hands-on, project-oriented case studies and computer laboratories. In an effort to explore biology in more detail, the authors bravely chose a style that differs from the classical biomath texts ... whose focus is more on formal mathematics."--Lewi Stone, BioScience "The book begins with a stellar overview of the purpose of modeling, contrasting statistical with dynamical models, and theoretical with practical models both clearly and even-handedly...[E]ngaging the full breadth and depth of this book could be an education for both instructors and students alike."--Frederick R. Adler, Mathematical Biosciences "[S]tudents from both biology and mathematics can gain much from this book. Dynamic Models in Biology would be appropriate for use in a semester or two-quarter course; however, with judicious selection of topics, it can be used in a quarter. My students included undergraduates in biology with knowledge only of calculus, undergraduates in mathematics, and graduate students and academic staff in biology, all enrolled on a ten-week course... Overall, Dynamic Models in Biology fills an important niche in the biological modeling canon. It occupies a place on my shelf next to Edelstein-Keshet (1988) and Murray (1989), and like them, will become a well-thumbed reference."--Carole L. Hom, Environmental Conservation


Best Sellers


Product Details
  • ISBN-13: 9780691125893
  • Publisher: Princeton University Press
  • Publisher Imprint: Princeton University Press
  • Height: 254 mm
  • No of Pages: 352
  • Returnable: Y
  • Width: 178 mm
  • ISBN-10: 0691125899
  • Publisher Date: 16 Apr 2006
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Weight: 709 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Dynamic Models in Biology
Princeton University Press -
Dynamic Models in Biology
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Dynamic Models in Biology

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!