Buy Probability and Statistics for Engineers, International Edition
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Mathematics > Probability and statistics > Probability and Statistics for Engineers, International Edition
Probability and Statistics for Engineers, International Edition

Probability and Statistics for Engineers, International Edition


     0     
5
4
3
2
1



Available


X
About the Book

PROBABILITY AND STATISTICS FOR ENGINEERS, 5e, International Edition provides a one-semester, calculus-based introduction to engineering statistics that focuses on making intelligent sense of real engineering data and interpreting results. Traditional topics are presented thorough an accessible modern framework that emphasizes the statistical thinking, data collection and analysis, decision-making, and process improvement skills that engineers need on a daily basis to solve real problems. The text continues to be driven by its hallmark array of engineering applications'thoroughly expanded and modernized for the 5th edition'which tackle timely, interesting, and illuminating scenarios that show students the rich context behind the concepts. Within the presentation of topics and applications the authors continually develop students' intuition for collecting their own real data, analyzing it with the latest graphical tools, and interpreting the results with a goal of improving quality control and problem-solving process. Students will not only gain solid understanding of concepts and their real-life practicality, but will learn to become active statistical practitioners for their own future careers.

Table of Contents:
1. DATA COLLECTION AND EXPLORING UNIVARIATE DISTRIBUTIONS Introduction. A model for problem solving and its application. Types of data and frequency distribution tables. Tools for describing data: Graphical methods. Graphing Categorical Data. Graphing Numerical Data. Visualizing distributions. Tool for Describing Data: Numerical measures. Measures of Center. Measures of Position. Measures of variation (or spread). Reading Computer Printouts. The effect of shifting and scaling of measurements on summary measures. Summary Measures and Decisions. The Empirical Rule. Standardized Values and z-scores. Boxplots. Detecting Outliers. Summary. Supplemental Exercises. 2. EXPLORING BIVARIATE DISTRIBUTIONS AND ESTIMATING RELATIONS Introduction. Two-way table for categorical data. Time series analysis. Scatterplots: Graphical analysis of association between measurements. Correlation: Estimating the strength of linear relation. Regression: Modeling linear relationships. The Coefficient of Determination. Residual Analysis: Assessing the adequacy of the model. Transformations. Reading Computer Printout. Summary. Supplemental Exercises. 3. OBTAINING DATA. Introduction. Overview of methods of data collection. Planning and Conducting Surveys. Planning and Conducting Experiments. Completely Randomized Design. Randomized Block Design. Planning and Conducting an Observational Study. Summary. Supplemental Exercises. 4. PROBABILITY. Introduction. Sample space and relationships among events. Definition of probability. Counting rules useful in probability. Conditional probability and independence. Rules of probability. Odds, odds ratios, and risk ratio. Summary. Supplemental Exercises. 5. DISCRETE PROBABILITY DISTRIBUTIONS. Introduction. Random variables and their probability distributions Expected values of random variables. The Bernoulli distribution. The Binomial distribution. The Geometric and Negative Binomial distributions. The Geometric distribution. The Negative Binomial distribution. The Poisson distribution. The hypergeometric distribution. The Moment-Generating Function. Simulating probability distributions. Summary. Supplementary Exercises. 6. CONTINUOUS PROBABILITY DISTRIBUTIONS. Introduction. Continuous random variables and their probability distributions. Expected values of continuous random variables. The Uniform distribution. The exponential distribution. The Gamma distribution. The Normal distribution. The Lognormal Distribution. The Beta distribution. The Weibull distribution. Reliability. The Moment-generating Functions for Continuous Random Variables. Simulating probability distributions. Summary. Supplementary Exercises. 7. MULTIVARIATE PROBABILITY DISTRIBUTIONS. Introduction. Bivariate and Marginal Probability Distributions. Conditional Probability Distributions. Independent Random Variables. Expected Values of Functions of Random Variables. The Multinomial Distribution. More on the Moment-Generating Function. Conditional Expectations. Compounding and Its Applications. Summary. Supplementary Exercises. 8. STATISTICS, SAMPLING DISTRIBUTIONS, AND CONTROL CHARTS. Introduction. The sampling distributions. The sampling distribution of X (General Distribution). The sampling distribution of X (Normal Distribution). The sampling distribution of sample proportion Y/n (Large sample). The sampling distribution of S² (Normal Distribution). Sampling Distributions: The multiple-sample case. The sampling distribution of (X1 – X2). The sampling distribution of XD. The sampling distribution of (^p1 – ^p2). The sampling distribution of S²1/S²2. Control Charts. The X-Chart: Known µ and s. The X and R-Charts: Unknown µ and s. The X and S-Charts: Unknown µ and s. The p-Chart. The c-chart. The u-chart. Process Capability. Summary. Supplementary Exercises. 9. ESTIMATION. Introduction. Point estimators and their properties. Confidence Intervals: The Single-Sample Case. Confidence Interval for µ: General Distribution. Confidence Interval for Mean: Normal Distribution. Confidence Interval for Proportion: Large sample case. Confidence interval for s². Confidence Intervals: The Multiple Samples Case. Confidence Interval for Linear Functions of Means: General Distributions. Confidence Interval for Linear Functions of Means: Normal Distributions. Large Samples Confidence Intervals for Linear Functions of Proportions. Confidence Interval for s²2/s²1: Normal distribution case. Prediction Intervals. Tolerance Intervals. The Method of Maximum Likelihood. Bayes Estimators. Summary. Supplementary Exercises. 10. HYPOTHESIS TESTING. Introduction. Terminology of Hypothesis Testing. Hypothesis Testing: The Single-Sample Case. Testing for Mean: General Distributions Case. Testing a Mean: Normal distribution Case. Testing for Proportion: Large Sample Case. Testing for Variance: Normal Distribution Case. Hypothesis Testing: The Multiple-Sample Case. Testing the Difference between Two means: General Distributions Case. Testing the Difference between Two means: Normal Distributions case. Testing the difference between the means for paired samples. Testing the ratio of variances: Normal distributions case. ?² tests on Frequency data. Testing parameters of the multinomial distribution. Testing equality among Binomial parameters. Test of Independence. Goodness of Fit Tests. ?² Test. Kolmogorov-Smirnov test. Using Computer Programs to Fit Distributions. Acceptance Sampling. Acceptance Sampling by Attributes. Acceptance Sampling by Variables. Summary. Supplementary Exercises. 11. ESTIMATION AND INFERENCE FOR REGRESSION PARAMETERS. Introduction. Regression models with one predictor variable. The probability distribution of random error component. Making inferences about slope. Estimating slope using a confidence interval. Testing a hypothesis about slope. Connection between inference for slope and correlation coefficient. Using the simple linear model for estimation and prediction. Multiple regression analysis. Fitting the model: The least-squares approach. Estimation of error variance. Inferences in multiple regression. A test of model adequacy. Estimating and testing hypothesis about individual parameters. Using the multiple regression model for estimation and prediction. Model building: A test for portion of a model. Other regression models. Response surface method. Modeling a time trend. Logistic regression. Checking conditions and some pitfalls. Checking conditions. Some pitfalls. Reading printouts. Summary. Supplemental Exercises. 12. ANALYSIS OF VARIANCE. Introduction. Review of Designed Experiments. Analysis of Variance (ANOVA) Technique. Analysis of Variance for Completely Randomized Design. Relationship of ANOVA for CRD with a t test and Regression. Equivalence between a t test and an F test for CRD with 2 treatments. ANOVA for CRD and Regression Analysis. Estimation for Completely randomized design. Analysis of Variance for the Randomized Block Design. ANOVA for RBD. Relation between a Paired t test and an F test for RBD. ANOVA for RBD and Regression Analysis. Bonferroni Method for Estimation for RBD. Factorial Experiments. Analysis of variance for the Factorial Experiment. Fitting Higher Order Models. Summary. Supplemental Exercises. APPENDIX. REFERENCES.

About the Author :
Richard L. Scheaffer, Professor Emeritus of Statistics, University of Florida, received his Ph.D. in statistics from Florida State University. Accompanying a career of teaching, research and administration, Dr. Scheaffer has led efforts on the improvement of statistics education throughout the school and college curriculum. Co-author of five textbooks, he was one of the developers of the Quantitative Literacy Project that formed the basis of the data analysis strand in the curriculum standards of the National Council of Teachers of Mathematics. He also led the task force that developed the AP Statistics Program, for which he served as Chief Faculty Consultant. Dr. Scheaffer is a Fellow and past president of the American Statistical Association, a past chair of the Conference Board of the Mathematical Sciences, and an advisor on numerous statistics education projects. Madhuri S. Mulekar, Professor of Statistics, University of South Alabama, received her Ph.D. from Oklahoma State University. She is involved in teaching, research, and consulting activities with the faculty from the college of medicine, University of South Alabama hospitals, and Mitchell Cancer Institute. She has authored an exam-preparation book for Advanced Placement (AP) Statistics and has been involved with the AP Statistics exam since it was first administered, serving on the test development committee. She is actively involved in the American Statistical Association’s efforts for improving statistics education by serving on various national committees such as Advisory Committee on Continuing Education and ASA-MAA joint committee on undergraduate statistics. Prof. Mulekar has published many research as well as teaching related articles. Recipient of many grants, she directed undergraduate research program in statistics that was funded by NSF. Dr. Mulekar is a Fellow of American Statistical Association and a recipient of outstanding scholar award by Phi Kappa Phi, the national honor society.

Review :
1. DATA COLLECTION AND EXPLORING UNIVARIATE DISTRIBUTIONS Introduction. A model for problem solving and its application. Types of data and frequency distribution tables. Tools for describing data: Graphical methods. Graphing Categorical Data. Graphing Numerical Data. Visualizing distributions. Tool for Describing Data: Numerical measures. Measures of Center. Measures of Position. Measures of variation (or spread). Reading Computer Printouts. The effect of shifting and scaling of measurements on summary measures. Summary Measures and Decisions. The Empirical Rule. Standardized Values and z-scores. Boxplots. Detecting Outliers. Summary. Supplemental Exercises. 2. EXPLORING BIVARIATE DISTRIBUTIONS AND ESTIMATING RELATIONS Introduction. Two-way table for categorical data. Time series analysis. Scatterplots: Graphical analysis of association between measurements. Correlation: Estimating the strength of linear relation. Regression: Modeling linear relationships. The Coefficient of Determination. Residual Analysis: Assessing the adequacy of the model. Transformations. Reading Computer Printout. Summary. Supplemental Exercises. 3. OBTAINING DATA. Introduction. Overview of methods of data collection. Planning and Conducting Surveys. Planning and Conducting Experiments. Completely Randomized Design. Randomized Block Design. Planning and Conducting an Observational Study. Summary. Supplemental Exercises. 4. PROBABILITY. Introduction. Sample space and relationships among events. Definition of probability. Counting rules useful in probability. Conditional probability and independence. Rules of probability. Odds, odds ratios, and risk ratio. Summary. Supplemental Exercises. 5. DISCRETE PROBABILITY DISTRIBUTIONS. Introduction. Random variables and their probability distributions Expected values of random variables. The Bernoulli distribution. The Binomial distribution. The Geometric and Negative Binomial distributions. The Geometric distribution. The Negative Binomial distribution. The Poisson distribution. The hypergeometric distribution. The Moment-Generating Function. Simulating probability distributions. Summary. Supplementary Exercises. 6. CONTINUOUS PROBABILITY DISTRIBUTIONS. Introduction. Continuous random variables and their probability distributions. Expected values of continuous random variables. The Uniform distribution. The exponential distribution. The Gamma distribution. The Normal distribution. The Lognormal Distribution. The Beta distribution. The Weibull distribution. Reliability. The Moment-generating Functions for Continuous Random Variables. Simulating probability distributions. Summary. Supplementary Exercises. 7. MULTIVARIATE PROBABILITY DISTRIBUTIONS. Introduction. Bivariate and Marginal Probability Distributions. Conditional Probability Distributions. Independent Random Variables. Expected Values of Functions of Random Variables. The Multinomial Distribution. More on the Moment-Generating Function. Conditional Expectations. Compounding and Its Applications. Summary. Supplementary Exercises. 8. STATISTICS, SAMPLING DISTRIBUTIONS, AND CONTROL CHARTS. Introduction. The sampling distributions. The sampling distribution of X (General Distribution). The sampling distribution of X (Normal Distribution). The sampling distribution of sample proportion Y/n (Large sample). The sampling distribution of S^2 (Normal Distribution). Sampling Distributions: The multiple-sample case. The sampling distribution of (X1 - X2). The sampling distribution of XD. The sampling distribution of (^p1 - ^p2). The sampling distribution of S^21/S^22. Control Charts. The X-Chart: Known and s. The X and R-Charts: Unknown and s. The X and S-Charts: Unknown and s. The p-Chart. The c-chart. The u-chart. Process Capability. Summary. Supplementary Exercises. 9. ESTIMATION. Introduction. Point estimators and their properties. Confidence Intervals: The Single-Sample Case. Confidence Interval for : General Distribution. Confidence Interval for Mean: Normal Distribution. Confidence Interval for Proportion: Large sample case. Confidence interval for s^2. Confidence Intervals: The Multiple Samples Case. Confidence Interval for Linear Functions of Means: General Distributions. Confidence Interval for Linear Functions of Means: Normal Distributions. Large Samples Confidence Intervals for Linear Functions of Proportions. Confidence Interval for s^22/s^21: Normal distribution case. Prediction Intervals. Tolerance Intervals. The Method of Maximum Likelihood. Bayes Estimators. Summary. Supplementary Exercises. 10. HYPOTHESIS TESTING. Introduction. Terminology of Hypothesis Testing. Hypothesis Testing: The Single-Sample Case. Testing for Mean: General Distributions Case. Testing a Mean: Normal distribution Case. Testing for Proportion: Large Sample Case. Testing for Variance: Normal Distribution Case. Hypothesis Testing: The Multiple-Sample Case. Testing the Difference between Two means: General Distributions Case. Testing the Difference between Two means: Normal Distributions case. Testing the difference between the means for paired samples. Testing the ratio of variances: Normal distributions case. '^2 tests on Frequency data. Testing parameters of the multinomial distribution. Testing equality among Binomial parameters. Test of Independence. Goodness of Fit Tests. '^2 Test. Kolmogorov-Smirnov test. Using Computer Programs to Fit Distributions. Acceptance Sampling. Acceptance Sampling by Attributes. Acceptance Sampling by Variables. Summary. Supplementary Exercises. 11. ESTIMATION AND INFERENCE FOR REGRESSION PARAMETERS. Introduction. Regression models with one predictor variable. The probability distribution of random error component. Making inferences about slope. Estimating slope using a confidence interval. Testing a hypothesis about slope. Connection between inference for slope and correlation coefficient. Using the simple linear model for estimation and prediction. Multiple regression analysis. Fitting the model: The least-squares approach. Estimation of error variance. Inferences in multiple regression. A test of model adequacy. Estimating and testing hypothesis about individual parameters. Using the multiple regression model for estimation and prediction. Model building: A test for portion of a model. Other regression models. Response surface method. Modeling a time trend. Logistic regression. Checking conditions and some pitfalls. Checking conditions. Some pitfalls. Reading printouts. Summary. Supplemental Exercises. 12. ANALYSIS OF VARIANCE. Introduction. Review of Designed Experiments. Analysis of Variance (ANOVA) Technique. Analysis of Variance for Completely Randomized Design. Relationship of ANOVA for CRD with a t test and Regression. Equivalence between a t test and an F test for CRD with 2 treatments. ANOVA for CRD and Regression Analysis. Estimation for Completely randomized design. Analysis of Variance for the Randomized Block Design. ANOVA for RBD. Relation between a Paired t test and an F test for RBD. ANOVA for RBD and Regression Analysis. Bonferroni Method for Estimation for RBD. Factorial Experiments. Analysis of variance for the Factorial Experiment. Fitting Higher Order Models. Summary. Supplemental Exercises. APPENDIX. REFERENCES.


Best Sellers


Product Details
  • ISBN-13: 9780538735902
  • Publisher: Cengage Learning, Inc
  • Publisher Imprint: Brooks/Cole
  • Height: 256 mm
  • No of Pages: 848
  • Weight: 1480 gr
  • ISBN-10: 0538735902
  • Publisher Date: 01 Jul 2010
  • Binding: Paperback
  • Language: English
  • Spine Width: 32 mm
  • Width: 206 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Probability and Statistics for Engineers, International Edition
Cengage Learning, Inc -
Probability and Statistics for Engineers, International Edition
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Probability and Statistics for Engineers, International Edition

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!