Bayesian Inference for Gene Expression and Proteomics
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Mathematics > Probability and statistics > Bayesian Inference for Gene Expression and Proteomics
Bayesian Inference for Gene Expression and Proteomics

Bayesian Inference for Gene Expression and Proteomics


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

The interdisciplinary nature of bioinformatics presents a research challenge in integrating concepts, methods, software and multiplatform data. Although there have been rapid developments in new technology and an inundation of statistical methods for addressing other types of high-throughput data, such as proteomic profiles that arise from mass spectrometry experiments. This book discusses the development and application of Bayesian methods in the analysis of high-throughput bioinformatics data that arise from medical, in particular, cancer research, as well as molecular and structural biology. The Bayesian approach has the advantage that evidence can be easily and flexibly incorporated into statistical methods. A basic overview of the biological and technical principles behind multi-platform high-throughput experimentation is followed by expert reviews of Bayesian methodology, tools and software for single group inference, group comparisons, classification and clustering, motif discovery and regulatory networks, and Bayesian networks and gene interactions.

Table of Contents:
1. An introduction to high-throughput bioinformatics data Keith Baggerly, Kevin Coombes and Jeffrey S. Morris; 2. Hierarchical mixture models for expression profiles Michael Newton, Ping Wang and Christina Kendziorski; 3. Bayesian hierarchical models for inference in microarray data Anne-Mette K. Hein, Alex Lewin and Sylvia Richardson; 4. Bayesian process-based modeling of two-channel microarray experiments estimating absolute mRNA concentrations Mark A. van de Wiel, Marit Holden, Ingrid K. Glad, Heidi Lyng and Arnoldo Frigessi; 5. Identification of biomarkers in classification and clustering of high-throughput data Mahlet Tadesse, Marina Vannucci, Naijun Sha and Sinae Kim; 6. Modeling nonlinear gene interactions using Bayesian MARS Veerabhadran Baladandayuthapani, Chris C. Holmes, Bani K. Mallick and Raymond J. Carroll; 7. Models for probability of under- and over-expression: the POE scale Elizabeth Garrett-Mayer and Robert Scharpf; 8. Sparse statistical modelling in gene expression genomics Joseph Lucas, Carlos Carvalho, Quanli Wang, Andrea Bild, Joseph Nevins and Mike West; 9. Bayesian analysis of cell-cycle gene expression Chuan Zhou, Jon Wakefield and Linda L. Breeden; 10. Model-based clustering for expression data via a Dirichlet process mixture model David Dahl; 11. Interval mapping for Expression Quantitative Trait Loci mapping Meng Chen and Christina Kendziorski; 12. Bayesian mixture model for gene expression and protein profiles Michele Guindani, Kim-Anh Do, Peter Müller and Jeffrey S. Morris; 13. Shrinkage estimation for SAGE data using a mixture Dirichlet prior Jeffrey S. Morris, Kevin Coombes and Keith Baggerly; 14. Analysis of mass spectrometry data using Bayesian wavelet-based functional mixed models Jeffrey S. Morris, Philip J. Brown, Keith Baggerly and Kevin Coombes; 15. Nonparametric models for proteomic peak identification and quantification Merlise Clyde, Leanna House and Robert Wolpert; 16. Bayesian modeling and inference for sequence motif discovery Mayetri Gupta and Jun S. Liu; 17. Identifying of DNA regulatory motifs and regulators by integrating gene expression and sequence data Deuk Woo Kwon, Sinae Kim, David Dahl, Michael Swartz, Mahlet Tadesse and Marina Vannucci; 18. A misclassification model for inferring transcriptional regulatory networks Ning Sun and Hongyu Zhao; 19. Estimating cellular signaling from transcription data Andrew V. Kossenkov, Ghislain Bidaut and Michael Ochs; 20. Computational methods for learning Bayesian networks from high-throughput biological data Bradley Broom and Devika Subramanian; 21. Modeling transcriptional regulation: Bayesian networks and informative priors Alexander J. Hartemink; 22. Sample size choice for microarray experiments Peter Müller, Christian Robert and Judith Rousseau.

About the Author :
Professor Do has significant publications contributing towards her fields of interest including efficient bootstrap methods and empirical likelihood, classification and functional methods with smoothing, Bayesian methods for the genetic analysis of twin and family data, and general biostatistical methods applicable to medical research. One of her current collaborative research focuses with colleagues at M.D. Anderson Cancer Center is towards the development of statistical methods to analyze data produced from high-throughput technologies, such as cDNA microarrays and serial analysis of gene expression (SAGE), to phage peptide libraries and proteomic profiles generated by mass spectrometry, with the goal of revolutionizing the diagnosis, classification, and ultimately the treatment of diseases, including cancer. Specifically, Professor Do has developed a program (GENECLUST) written in Splus/R and C with a JAVA interface that can be implemented on a variety of platforms (Linux, Solaris, DEC, Windows). GENECLUST is basically an efficient implementation of the gene-shaving procedure described by Hastie et al (2000). Another program (BAYESMIX), also written in Splus/R and C, implements a Bayesian mixture model for differential gene expression. Professor Mueller's research interests and contributions are in the areas of Markov chain Monte Carlo posterior simluation, nonparametric Bayesian inference, hierarchical models, mixture models, and Bayesian decision problems. In recent research, he has developed related models and inference approaches for applications to bioinformatics problems. In particular, the use of Dirichlet process mixture models for inference in microarray group comparison experiments, decision theoretic solutions to sample size choice in high throughput gene and protein expression experiments, and the use of hierarchical mixture of Beta models for inference in mass/charge spectra. Professor Vannucci's research has focused on the theory and practice of Bayesian variable selection techniques and on the development of wavelt-based statistical models and their applications. Her work has been often motivated by real problems that needed to be addressed with suitable statistical methods. DNA microarray data are characterized by many variables (gene expressions) and relatively few samples. These studies often aim either at predicting different types of tissues or diseases or at the discovery of unknown subtypes (particularly in cancer studies). In addition, it is important that the identified molecular classes are defined on a msall number of genes that can serve as biomarkers for improved diagnosis and therapeutic intervention. Professor Vannucci's work has focused on the development of Bayesian methods that offer a coherent framework in which variable selection and classification or clustering of the samples are performed simultaneously. Her word has been applied to the identification of molecular signatures predictive of different stages of rheumatoids arthritis (RA), to microarray data on endometroid endometrial cancer, and to ovarian cancer prediction based on proteomic data. A recent trend in the bioinformatics field has focused on the integration of data of different forms. Professor Vannucci has worked on models that combine DNA microarray data with genome sequences. The method uses Bayesian variable selection techniques to identify DNA-binding sites for regulatory factors and has been applied to S. cerevisiae and S. pombe genomes using microarray data from environmental stress experiments.

Review :
' ... an authoritative volume ... presents the state of the art statistical techniques that are starting to make an impact at the forefronts of modern scientific discovery.' Journal of the RSS


Best Sellers


Product Details
  • ISBN-13: 9780521860925
  • Publisher: Cambridge University Press
  • Publisher Imprint: Cambridge University Press
  • Height: 236 mm
  • No of Pages: 456
  • Returnable: N
  • Returnable: N
  • Weight: 738 gr
  • ISBN-10: 052186092X
  • Publisher Date: 24 Jul 2006
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Returnable: N
  • Spine Width: 28 mm
  • Width: 158 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Bayesian Inference for Gene Expression and Proteomics
Cambridge University Press -
Bayesian Inference for Gene Expression and Proteomics
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Bayesian Inference for Gene Expression and Proteomics

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!