Dynamic Data Assimilation
Home > Mathematics and Science Textbooks > Mathematics > Calculus and mathematical analysis > Dynamic Data Assimilation: A Least Squares Approach(Series Number 104 Encyclopedia of Mathematics and its Applications)
Dynamic Data Assimilation: A Least Squares Approach(Series Number 104 Encyclopedia of Mathematics and its Applications)

Dynamic Data Assimilation: A Least Squares Approach(Series Number 104 Encyclopedia of Mathematics and its Applications)


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Dynamic data assimilation is the assessment, combination and synthesis of observational data, scientific laws and mathematical models to determine the state of a complex physical system, for instance as a preliminary step in making predictions about the system's behaviour. The topic has assumed increasing importance in fields such as numerical weather prediction where conscientious efforts are being made to extend the term of reliable weather forecasts beyond the few days that are presently feasible. This book is designed to be a basic one-stop reference for graduate students and researchers. It is based on graduate courses taught over a decade to mathematicians, scientists, and engineers, and its modular structure accommodates the various audience requirements. Thus Part I is a broad introduction to the history, development and philosophy of data assimilation, illustrated by examples; Part II considers the classical, static approaches, both linear and nonlinear; and Part III describes computational techniques. Parts IV to VII are concerned with how statistical and dynamic ideas can be incorporated into the classical framework. Key themes covered here include estimation theory, stochastic and dynamic models, and sequential filtering. The final part addresses the predictability of dynamical systems. Chapters end with a section that provides pointers to the literature, and a set of exercises with instructive hints.

Table of Contents:
1. Synopsis; 2. Pathways into data assimilation: illustrative examples; 3. Applications; 4. Brief history of data assimilation; 5. Linear least squares estimation: method of normal equations; 6. A geometric view: projection and invariance; 7. Nonlinear least squares estimation; 8. Recursive least squares estimation; 9. Matrix methods; 10. Optimisation: steepest descent method; 11. Conjugate direction/gradient methods; 12. Newton and quasi-Newton methods; 13. Principles of statistical estimation; 14. Statistical least squares estimation; 15. Maximum likelihood method; 16. Bayesian estimation method; 17. From Gauss to Kalman: sequential, linear minimum variance estimation; 18. Data assimilation-static models: concepts and formulation; 19. Classical algorithms for data assimilation; 20. 3DVAR - a Bayesian formulation; 21. Spatial digital filters; 22. Dynamical data assimilation: the straight line problem; 23. First-order adjoint method: linear dynamics; 24. First-order adjoint method: nonlinear dynamics; 25. Second-order adjoint method; 26. The ADVAR problem: a statistical and a recursive view; 27. Linear filtering - Part I: Kalman filter; 28. Linear filtering-part II; 29. Nonlinear filtering; 30. Reduced rank filters; 31. Predictability: a stochastic view; 32. Predictability: a deterministic view; Bibliography; Index.

About the Author :
John M. Lewis is a Research Scientist at the National Severe Storms Laboratory in Oklahoma, and the Desert Research Institute in Nevada. S. Lakshmivarahan is a George Lynn Cross Research Professor at the School of Computer Science, University of Oklahoma. Sudarshan K. Dhall is a Professor at the School of Computer Science, University of Oklahoma.

Review :
"I find a lot of detail that the readers will appreciate, and I like the way the book is structured -- from 'simple' estimation methods to the Kalman filter and variational methods." Professor Martin Ehrendorfer, University of Vienna "This book on data assimilation covers essentially all that we know about state estimation for dynamically evolving systems -- a grand effort on a much-needed textbook." Professor Tomi Vukicevic, Colorado State University "I think the book will be very useful, giving derivations of key results at a level that my staff will find appropriate." Dr. Andrew Lorenc, Head, Data Assimilation Section, British Meteorological Office "It was enjoyable to see so many ideas so nicely set out -- a treasure and wonderful resource for students." Dr. James Purser, Research Meteorologist, National Center for Environmental Prediction, USA "... The book is pleasant to read... The book is of interest to meteorologists, geologists, and other geoscientists, but also to statisticians and applied mathematicians." Stephan Morgenthaler, Mathematical Reviews "This book provides readers with a good mathematical framework for data assimilation, with all important proofs and deviations. I recommend this book for data assimilation system developers and colleagues who work with data assimilation research and applications." - Ziang-Yu Huang, Bulletin of the American Meteorological Society


Best Sellers


Product Details
  • ISBN-13: 9780511526480
  • Publisher: Cambridge University Press
  • Publisher Imprint: Cambridge University Press (Virtual Publishing)
  • Language: English
  • Sub Title: A Least Squares Approach
  • ISBN-10: 0511526482
  • Publisher Date: 18 Dec 2009
  • Binding: Digital download and online
  • Series Title: Series Number 104 Encyclopedia of Mathematics and its Applications


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Dynamic Data Assimilation: A Least Squares Approach(Series Number 104 Encyclopedia of Mathematics and its Applications)
Cambridge University Press -
Dynamic Data Assimilation: A Least Squares Approach(Series Number 104 Encyclopedia of Mathematics and its Applications)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Dynamic Data Assimilation: A Least Squares Approach(Series Number 104 Encyclopedia of Mathematics and its Applications)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!