A First Course in Partial Differential Equations with Complex Variables and Transform Methods
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Mathematics > Calculus and mathematical analysis > Differential calculus and equations > A First Course in Partial Differential Equations with Complex Variables and Transform Methods: (Dover Books on Mathema 1.4tics)
A First Course in Partial Differential Equations with Complex Variables and Transform Methods: (Dover Books on Mathema 1.4tics)

A First Course in Partial Differential Equations with Complex Variables and Transform Methods: (Dover Books on Mathema 1.4tics)


     0     
5
4
3
2
1



International Edition


X
About the Book

This popular text was created for a one-year undergraduate course or beginning graduate course in partial differential equations, including the elementary theory of complex variables. It employs a framework in which the general properties of partial differential equations, such as characteristics, domains of independence, and maximum principles, can be clearly seen. The only prerequisite is a good course in calculus.Incorporating many of the techniques of applied mathematics, the book also contains most of the concepts of rigorous analysis usually found in a course in advanced calculus. These techniques and concepts are presented in a setting where their need is clear and their application immediate. Chapters I through IV cover the one-dimensional wave equation, linear second-order partial differential equations in two variables, some properties of elliptic and parabolic equations and separation of variables, and Fourier series. Chapters V through VIII address nonhomogeneous problems, problems in higher dimensions and multiple Fourier series, Sturm-Liouville theory, and general Fourier expansions and analytic functions of a complex variable. The last four chapters are devoted to the evaluation of integrals by complex variable methods, solutions based on the Fourier and Laplace transforms, and numerical approximation methods. Numerous exercises are included throughout the text, with solutions at the back.

Table of Contents:
I. The one-dimensional wave equation 1. A physical problem and its mathematical models: the vibrating string 2. The one-dimensional wave equation 3. Discussion of the solution: characteristics 4. Reflection and the free boundary problem 5. The nonhomogeneous wave equation II. Linear second-order partial differential equations in two variables 6. Linearity and superposition 7. Uniqueness for the vibrating string problem 8. Classification of second-order equations with constant coefficients 9. Classification of general second-order operators III. Some properties of elliptic and parabolic equations 10. Laplace's equation 11. Green's theorem and uniqueness for the Laplace's equation 12. The maximum principle 13. The heat equation IV. Separation of variables and Fourier series 14. The method of separation of variables 15. Orthogonality and least square approximation 16. Completeness and the Parseval equation 17. The Riemann-Lebesgue lemma 18. Convergence of the trigonometric Fourier series 19. "Uniform convergence, Schwarz's inequality, and completeness" 20. Sine and cosine series 21. Change of scale 22. The heat equation 23. Laplace's equation in a rectangle 24. Laplace's equation in a circle 25. An extension of the validity of these solutions 26. The damped wave equation V. Nonhomogeneous problems 27. Initial value problems for ordinary differential equations 28. Boundary value problems and Green's function for ordinary differential equations 29. Nonhomogeneous problems and the finite Fourier transform 30. Green's function VI. Problems in higher dimensions and multiple Fourier series 31. Multiple Fourier series 32. Laplace's equation in a cube 33. Laplace's equation in a cylinder 34. The three-dimensional wave equation in a cube 35. Poisson's equation in a cube VII. Sturm-Liouville theory and general Fourier expansions 36. Eigenfunction expansions for regular second-order ordinary differential equations 37. Vibration of a variable string 38. Some properties of eigenvalues and eigenfunctions 39. Equations with singular endpoints 40. Some properties of Bessel functions 41. Vibration of a circular membrane 42. Forced vibration of a circular membrane: natural frequencies and resonance 43. The Legendre polynomials and associated Legendre functions 44. Laplace's equation in the sphere 45. Poisson's equation and Green's function for the sphere VIII. Analytic functions of a complex variable 46. Complex numbers 47. Complex power series and harmonic functions 48. Analytic functions 49. Contour integrals and Cauchy's theorem 50. Composition of analytic functions 51. Taylor series of composite functions 52. Conformal mapping and Laplace's equation 53. The bilinear transformation 54. Laplace's equation on unbounded domains 55. Some special conformal mappings 56. The Cauchy integral representation and Liouville's theorem IX. Evaluation of integrals by complex variable methods 57. Singularities of analytic functions 58. The calculus of residues 59. Laurent series 60. Infinite integrals 61. Infinite series of residues 62. Integrals along branch cuts X. The Fourier transform 63. The Fourier transform 64. Jordan's lemma 65. Schwarz's inequality and the triangle inequality for infinite integrals 66. Fourier transforms of square integrable functions: the Parseval equation 67. Fourier inversion theorems 68. Sine and cosine transforms 69. Some operational formulas 70. The convolution product 71. Multiple Fourier transforms: the heat equation in three dimensions 72. The three-dimensional wave equation 73. The Fourier transform with complex argument XI. The Laplace transform 74. The Laplace transform 75. Initial value problems for ordinary differential equations 76. Initial value problems for the one-dimensional heat equation 77. A diffraction problem 78. The Stokes rule and Duhamel's principle XII. Approximation methods 79. "Exact" and approximate solutions" 80. The method of finite differences for initial-boundary value problems 81. The finite difference method for Laplace's equation 82. The method of successive approximations 83. The Raleigh-Ritz method SOLUTIONS TO THE EXERCISES INDEX


Best Sellers


Product Details
  • ISBN-13: 9780486686400
  • Publisher: Dover Publications Inc.
  • Publisher Imprint: Dover Publications Inc.
  • Height: 234 mm
  • No of Pages: 480
  • Spine Width: 24 mm
  • Width: 164 mm
  • ISBN-10: 048668640X
  • Publisher Date: 28 Mar 2003
  • Binding: Paperback
  • Language: English
  • Series Title: Dover Books on Mathema 1.4tics
  • Weight: 648 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
A First Course in Partial Differential Equations with Complex Variables and Transform Methods: (Dover Books on Mathema 1.4tics)
Dover Publications Inc. -
A First Course in Partial Differential Equations with Complex Variables and Transform Methods: (Dover Books on Mathema 1.4tics)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

A First Course in Partial Differential Equations with Complex Variables and Transform Methods: (Dover Books on Mathema 1.4tics)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!