Theory of Modern Electronic Semiconductor Devices
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Electronics and communications engineering > Electronics engineering > Electronic devices and materials > Theory of Modern Electronic Semiconductor Devices
Theory of Modern Electronic Semiconductor Devices

Theory of Modern Electronic Semiconductor Devices


     0     
5
4
3
2
1



International Edition


X
About the Book

A thorough examination of the present and future of semiconductor device technology Engineers continue to develop new electronic semiconductor devices that are almost exponentially smaller, faster, and more efficient than their immediate predecessors. Theory of Modern Electronic Semiconductor Devices endeavors to provide an up-to-date, extended discussion of the most important emerging devices and trends in semiconductor technology, setting the pace for the next generation of the discipline's literature. Kevin Brennan and April Brown focus on three increasingly important areas: telecommunications, quantum structures, and challenges and alternatives to CMOS technology. Specifically, the text examines the behavior of heterostructure devices for communications systems, quantum phenomena that appear in miniaturized structures and new nanoelectronic device types that exploit these effects, the challenges faced by continued miniaturization of CMOS devices, and futuristic alternatives. Device structures on the commercial and research levels analyzed in detail include: * Heterostructure field effect transistors * Bipolar and CMOS transistors * Resonant tunneling diodes * Real space transfer transistors * Quantum dot cellular automata * Single electron transistors The book contains many homework exercises at the end of each chapter, and a solution manual can be obtained for instructors. Emphasizing the development of new technology, Theory of Modern Electronic Semiconductor Devices is an ideal companion to electrical and computer engineering graduate level courses and an essential reference for semiconductor device engineers.

Table of Contents:
PREFACE. 1 OVERVIEW OF SEMICONDUCTOR DEVICE TRENDS. 1.1 Moore's Law and Its Implications. 1.2 Semiconductor Devices for Telecommunications. 1.3 Digital Communications. 2 SEMICONDUCTOR HETEROSTRUCTURES. 2.1 Formation of Heterostructures. 2.2 Modulation Doping. 2.3 Two-Dimensional Subband Transport at Heterointerfaces. 2.4 Strain and Stress at Heterointerfaces. 2.5 Perpendicular Transport in Heterostructures and Superlattices. 2.6 Heterojunction Materials Systems: Intrinsic and Extrinsic Properties. Problems. 3 HETEROSTRUCTURE FIELD-EFFECT TRANSISTORS. 3.1 Motivation. 3.2 Basics of Heterostructure Field-Effect Transistors. 3.3 Simplified Long-Channel Model of a MODFET. 3.4 Physical Features of Advanced State-of-the-Art MODFETs. 3.5 High-Frequency Performance of MODFETs. 3.6 Materials Properties and Structure Optimization for HFETs. Problems. 4 HETEROSTRUCTURE BIPOLAR TRANSISTORS. 4.1 Review of Bipolar Junction Transistors. 4.2 Emitter-Base Heterojunction Bipolar Transistors. 4.3 Base Transport Dynamics. 4.4 Nonstationary Transport Effects and Breakdown. 4.5 High-Frequency Performance of HBTs. 4.6 Materials Properties and Structure Optimization for HBTs . Problems. 5 TRANSFERRED ELECTRON EFFECTS, NEGATIVE DIFFERENTIAL RESISTANCE, AND DEVICES. 5.1 Introduction. 5.2 k-Space Transfer. 5.3 Real-Space Transfer. 5.4 Consequences of NDR in a Semiconductor. 5.5 Transferred Electron-Effect Oscillators: Gunn Diodes. 5.6 Negative Differential Resistance Transistors. 5.7 IMPATT Diodes. Problems. 6 RESONANT TUNNELING AND DEVICES. 6.1 Physics of Resonant Tunneling: Qualitative Approach. 6.2 Physics of Resonant Tunneling: Envelope Approximation. 6.3 Inelastic Phonon Scattering Assisted Tunneling: Hopping Conduction. 6.4 Resonant Tunneling Diodes: High-Frequency Applications. 6.5 Resonant Tunneling Diodes: Digital Applications. 6.6 Resonant Tunneling Transistors. Problems. 7 CMOS: DEVICES AND FUTURE CHALLENGES. 7.1 Why CMOS? 7.2 Basics of Long-Channel MOSFET Operation. 7.3 Short-Channel Effects. 7.4 Scaling Theory. 7.5 Processing Limitations to Continued Miniaturization. Problems. 8 BEYOND CMOS: FUTURE APPROACHES TO COMPUTING HARDWARE. 8.1 Alternative MOS Device Structures: SOI, Dual-Gate FETs, and SiGe. 8.2 Quantum-Dot Devices and Cellular Automata. 8.3 Molecular Computing. 8.4 Field-Programmable Gate Arrays and Defect-Tolerant Computing. 8.5 Coulomb Blockade and Single-Electron Transistors. 8.6 Quantum Computing. Problems. 9 MAGNETIC FIELD EFFECTS IN SEMICONDUCTORS. 9.1 Landau Levels. 9.2 Classical Hall Effect. 9.3 Integer Quantum Hall Effect. 9.4 Fractional Quantum Hall Effect. 9.5 Shubnikov-de Haas Oscillations. Problems. REFERENCES. APPENDIX A: PHYSICAL CONSTANTS. APPENDIX B: BULK MATERIAL PARAMETERS. Table I: Silicon. Table II: Ge. Table III: GaAs. Table IV: InP. Table V: InAs. Table VI: InN. Table VII: GaN. Table VIII: SiC. Table IX: ZnS. Table X: ZnSe. Table XI : Al x Ga 1 fx As. Table XI I : Ga 0:47 In 0:53 As. Table XIII: Al 0:48 In 0:52 As. Table XI V: Ga 0:5 In 0:5 P. Table XV: Hg 0:70 Cd 0:30 Te. APPENDIX C: HETEROJUNCTION PROPERTIES. INDEX.

About the Author :
KEVIN F. BRENNAN, PhD, is Byer's Professor of Electrical and Computer Engineering and APRIL S. BROWN, PhD, is Professor of Electrical and Computer Engineering in the School of Electrical and Computer Engineering at the Georgia Institute of Technology in Atlanta, Georgia.

Review :
"A discussion of important emerging technologies and trends in semiconductor devices..." SciTech Book News


Best Sellers


Product Details
  • ISBN-13: 9780471415411
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: Wiley-Interscience
  • Height: 241 mm
  • No of Pages: 464
  • Returnable: N
  • Weight: 767 gr
  • ISBN-10: 0471415413
  • Publisher Date: 14 Mar 2002
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Spine Width: 25 mm
  • Width: 160 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Theory of Modern Electronic Semiconductor Devices
John Wiley & Sons Inc -
Theory of Modern Electronic Semiconductor Devices
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Theory of Modern Electronic Semiconductor Devices

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!