Diffraction, Fourier Optics and Imaging
Home > Mathematics and Science Textbooks > Physics > Optical physics > Diffraction, Fourier Optics and Imaging: (Wiley Series in Pure and Applied Optics)
Diffraction, Fourier Optics and Imaging: (Wiley Series in Pure and Applied Optics)

Diffraction, Fourier Optics and Imaging: (Wiley Series in Pure and Applied Optics)


     0     
5
4
3
2
1



International Edition


X
About the Book

This book presents current theories of diffraction, imaging, and related topics based on Fourier analysis and synthesis techniques, which are essential for understanding, analyzing, and synthesizing modern imaging, optical communications and networking, as well as micro/nano systems. Applications covered include tomography; magnetic resonance imaging; synthetic aperture radar (SAR) and interferometric SAR; optical communications and networking devices; computer-generated holograms and analog holograms; and wireless systems using EM waves.

Table of Contents:
Preface. 1. Diffraction, Fourier Optics and Imaging. 1.1 Introduction. 1.2 Examples of Emerging Applications with Growing Significance. 2. Linear Systems and Transforms. 2.1 Introduction. 2.2 Linear Systems and Shift Invariance. 2.3 Continuous-Space Fourier Transform. 2.4 Existence of Fourier Transform. 2.5 Properties of the Fourier Transform. 2.6 Real Fourier Transform. 2.7 Amplitude and Phase Spectra. 2.8 Hankel Transforms. 3. Fundamentals of Wave Propagation. 3.1 Introduction. 3.2 Waves. 3.3 Electromagnetic Waves. 3.4 Phasor Representation. 3.5 Wave Equations in a Charge-Free Medium. 3.6 Wave Equations in Phasor Representation in a Charge-Free Medium. 3.7 Plane EM Waves. 4. Scalar Diffraction Theory. 4.1 Introduction. 4.2 Helmholtz Equation. 4.3 Angular Spectrum of Plane Waves. 4.4 Fast Fourier Transform (FFT) Implementation of the Angular Spectrum of Plane Waves. 4.5 The Kirchoff Theory of Diffraction. 4.6 The Rayleigh–Sommerfeld Theory of Diffraction. 4.7 Another Derivation of the First Rayleigh–Sommerfeld Diffraction Integral. 4.8 The Rayleigh–Sommerfeld Diffraction Integral For Nonmonochromatic Waves. 5. Fresnel and Fraunhofer Approximations. 5.1 Introduction. 5.2 Diffraction in the Fresnel Region. 5.3 FFT Implementation of Fresnel Diffraction. 5.4 Paraxial Wave Equation. 5.5 Diffraction in the Fraunhofer Region. 5.6 Diffraction Gratings. 5.7 Fraunhofer Diffraction By a Sinusoidal Amplitude Grating. 5.8 Fresnel Diffraction By a Sinusoidal Amplitude Grating. 5.9 Fraunhofer Diffraction with a Sinusoidal Phase Grating. 5.10 Diffraction Gratings Made of Slits. 6. Inverse Diffraction. 6.1 Introduction. 6.2 Inversion of the Fresnel and Fraunhofer Representations. 6.3 Inversion of the Angular Spectrum Representation. 6.4 Analysis. 7. Wide-Angle Near and Far Field Approximations for Scalar Diffraction. 7.1 Introduction. 7.2 A Review of Fresnel and Fraunhofer Approximations. 7.3 The Radial Set of Approximations. 7.4 Higher Order Improvements and Analysis. 7.5 Inverse Diffraction and Iterative Optimization. 7.6 Numerical Examples. 7.7 More Accurate Approximations. 7.8 Conclusions. 8. Geometrical Optics. 8.1 Introduction. 8.2 Propagation of Rays. 8.3 The Ray Equations. 8.4 The Eikonal Equation. 8.5 Local Spatial Frequencies and Rays. 8.6 Matrix Representation of Meridional Rays. 8.7 Thick Lenses. 8.8 Entrance and Exit Pupils of an Optical System. 9. Fourier Transforms and Imaging with Coherent Optical Systems. 9.1 Introduction. 9.2 Phase Transformation With a Thin Lens. 9.3 Fourier Transforms With Lenses. 9.4 Image Formation As 2-D Linear Filtering. 9.5 Phase Contrast Microscopy. 9.6 Scanning Confocal Microscopy. 9.7 Operator Algebra for Complex Optical Systems. 10. Imaging with Quasi-Monochromatic Waves. 10.1 Introduction. 10.2 Hilbert Transform. 10.3 Analytic Signal. 10.4 Analytic Signal Representation of a Nonmonochromatic Wave Field. 10.5 Quasi-Monochromatic, Coherent, and Incoherent Waves. 10.6 Diffraction Effects in a General Imaging System. 10.7 Imaging With Quasi-Monochromatic Waves. 10.8 Frequency Response of a Diffraction-Limited Imaging System. 10.9 Computer Computation of the Optical Transfer Function. 10.10 Aberrations. 11. Optical Devices Based on Wave Modulation. 11.1 Introduction. 11.2 Photographic Films and Plates. 11.3 Transmittance of Light by Film. 11.4 Modulation Transfer Function. 11.5 Bleaching. 11.6 Diffractive Optics, Binary Optics, and Digital Optics. 11.7 E-Beam Lithography. 12. Wave Propagation in Inhomogeneous Media. 12.1 Introduction. 12.4 Beam Propagation Method. 12.5 Wave Propagation in a Directional Coupler. 13. Holography. 13.1 Introduction. 13.2 Coherent Wave Front Recording. 13.3 Types of Holograms. 13.4 Computer Simulation of Holographic Reconstruction. 13.5 Analysis of Holographic Imaging and Magnification. 13.6 Aberrations. 14. Apodization, Superresolution, and Recovery of Missing Information. 14.1 Introduction. 14.2 Apodization. 14.2.1 Discrete-Time Windows. 14.3 Two-Point Resolution and Recovery of Signals. 14.4 Contractions. 14.5 An Iterative Method of Contractions for Signal Recovery. 14.6 Iterative Constrained Deconvolution. 14.7 Method of Projections. 14.8 Method of Projections onto Convex Sets. 14.9 Gerchberg–Papoulis (GP) Algorithm. 14.10 Other POCS Algorithms. 14.11 Restoration From Phase. 14.12 Reconstruction From a Discretized Phase Function by Using the DFT. 14.13 Generalized Projections. 14.14 Restoration From Magnitude. 14.15 Image Recovery By Least Squares and the Generalized Inverse. 14.16 Computation of Hþ By Singular Value Decomposition (SVD). 14.17 The Steepest Descent Algorithm. 14.18 The Conjugate Gradient Method. 15. Diffractive Optics I. 15.1 Introduction. 15.2 Lohmann Method. 15.3 Approximations in the Lohmann Method. 15.4 Constant Amplitude Lohmann Method. 15.5 Quantized Lohmann Method. 15.6 Computer Simulations with the Lohmann Method. 15.7 A Fourier Method Based on Hard-Clipping. 15.8 A Simple Algorithm for Construction of 3-D Point Images. 15.9 The Fast Weighted Zero-Crossing Algorithm. 15.10 One-Image-Only Holography. 15.11 Fresnel Zone Plates. 16. Diffractive Optics II. 16.1 Introduction. 16.2 Virtual Holography. 16.3 The Method of POCS for the Design of Binary DOE. 16.4 Iterative Interlacing Technique (IIT). 16.5 Optimal Decimation-in-Frequency Iterative Interlacing Technique (ODIFIIT). 16.5.1 Experiments with ODIFIIT. 16.6 Combined Lohmann-ODIFIIT Method. 17. Computerized Imaging Techniques I: Synthetic Aperture Radar. 17.1 Introduction. 17.2 Synthetic Aperture Radar. 17.3 Range Resolution. 17.4 Choice of Pulse Waveform. 17.5 The Matched Filter. 17.6 Pulse Compression by Matched Filtering. 17.7 Cross-Range Resolution. 17.8 A Simplified Theory of SAR Imaging. 17.9 Image Reconstruction with Fresnel Approximation. 17.10 Algorithms for Digital Image Reconstruction. 18. Computerized Imaging II: Image Reconstruction from Projections. 18.1 Introduction. 18.2 The Radon Transform. 18.3 The Projection Slice Theorem. 18.4 The Inverse Radon Transform. 18.5 Properties of the Radon Transform. 18.6 Reconstruction of a Signal From its Projections. 18.7 The Fourier Reconstruction Method. 18.8 The Filtered-Backprojection Algorithm. 19. Dense Wavelength Division Multiplexing. 19.1 Introduction. 19.2 Array Waveguide Grating. 19.3 Method of Irregularly Sampled Zero-Crossings (MISZC). 19.4 Analysis of MISZC. 19.4.1 Dispersion Analysis. 19.4.2 Finite-Sized Apertures. 19.5 Computer Experiments. 19.6 Implementational Issues. 20. Numerical Methods for Rigorous Diffraction Theory. 20.1 Introduction. 20.2 BPM Based on Finite Differences. 20.3 Wide Angle BPM. 20.4 Finite Differences. 20.5 Finite Difference Time Domain Method. 20.6 Computer Experiments. 20.7 Fourier Modal Methods. Appendix A: The Impulse Function. Appendix B: Linear Vector Spaces. Appendix C: The Discrete-Time Fourier Transform, The Discrete Fourier Transform and The Fast Fourier Transform. References. Index.

About the Author :
OKAN K. ERSOY, PhD, is Professor of Electrical and Computer Engineering at Purdue University. He is also an adjunct professor at Bogazici University. His research interests include optical information processing, digital signal/image processing, statistical and computer intelligence, Fourier-related transforms and time- frequency methods.


Best Sellers


Product Details
  • ISBN-13: 9780471238164
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: Wiley-Interscience
  • Height: 238 mm
  • No of Pages: 432
  • Returnable: N
  • Spine Width: 26 mm
  • Width: 164 mm
  • ISBN-10: 0471238163
  • Publisher Date: 05 Jan 2007
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Series Title: Wiley Series in Pure and Applied Optics
  • Weight: 733 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Diffraction, Fourier Optics and Imaging: (Wiley Series in Pure and Applied Optics)
John Wiley & Sons Inc -
Diffraction, Fourier Optics and Imaging: (Wiley Series in Pure and Applied Optics)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Diffraction, Fourier Optics and Imaging: (Wiley Series in Pure and Applied Optics)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!