Lightwave Technology
Home > Science, Technology & Agriculture > Electronics and communications engineering > Lightwave Technology: Telecommunication Systems
Lightwave Technology: Telecommunication Systems

Lightwave Technology: Telecommunication Systems


     0     
5
4
3
2
1



Available


X
About the Book

The state of the art of modern lightwave system design Recent advances in lightwave technology have led to an explosion of high-speed global information systems throughout the world. Responding to the growth of this exciting new technology, Lightwave Technology provides a comprehensive and up-to-date account of the underlying theory, development, operation, and management of these systems from the perspective of both physics and engineering. The first independent volume of this two-volume set, Components and Devices, deals with the multitude of silica- and semiconductor-based optical devices. This second volume, Telecommunication Systems, helps readers understand the design of modern lightwave systems, with an emphasis on wavelength-division multiplexing (WDM) systems. * Two introductory chapters cover topics such as modulation formats and multiplexing techniques used to create optical bit streams * Chapters 3 to 5 consider degradation of optical signals through loss, dispersion, and nonlinear impairment during transmission and its corresponding impact on system performance * Chapters 6 to 8 provide readers with strategies for managing degradation induced by amplifier noise, fiber dispersion, and various nonlinear effects * Chapters 9 and 10 discuss the engineering issues involved in the design of WDM systems and optical networks Each chapter includes problems that enable readers to engage and test their new knowledge to solve problems. A CD containing illuminating examples based on RSoft Design Group's award-winning OptSim optical communication system simulation software is included with the book to assist readers in understanding design issues. Finally, extensive, up-to-date references at the end of each chapter enable students and researchers to gather more information about the most recent technology breakthroughs and applications. With its extensive problem sets and straightforward writing style, this is an excellent textbook for upper-level undergraduate and graduate students. Research scientists and engineers working in lightwave technology will use this text as a problem-solving resource and a reference to additional research papers in the field.

Table of Contents:
Preface 1 Introduction 1 1.1 Evolution of Lightwave Systems 1 1.2 Components of a Lightwave System 7 1.2.1 Optical Transmitters 7 1.2.2 Communication Channel 8 1.2.3 Optical Receivers 9 1.3 Electrical Signals 11 1.3.1 Analog and Digital Signals 11 1.3.2 Advantages of Digital Format 12 1.3.3 Analog to Digital Conversion 13 1.4 Channel Multiplexing 16 1.4.1 Time-Division Multiplexing 16 1.4.2 Frequency-Division Multiplexing 18 1.4.3 Code-Division Multiplexing 20 Problems 21 References 22 2 Optical Signal Generation 26 2.1 Modulation Formats 26 2.1.1 ASK Format 28 2.1.2 PSK Format 30 2.1.3 FSK Format 31 2.2 Digital Data Formats 32 2.2.1 Nonreturn-to-Zero Format 33 2.2.2 Return-to-Zero Format 34 2.2.3 Power Spectral Density 34 2.3 Bit-Stream Generation 37 2.3.1 NRZ Transmitters 37 2.3.2 RZ Transmitters 38 2.3.3 Modified RZ Transmitters 40 2.3.4 DPSK Transmitters and Receivers 46 2.4 Transmitter Design 47 2.4.1 Coupling Losses and Output Stability 48 2.4.2 Wavelength Stability and Tunability 50 2.4.3 Monolithic Integration 53 2.4.4 Reliability and Packaging 55 Problems 57 References 58 3 Signal Propagation in Fibers 63 3.1 Basic Propagation Equation 63 3.2 Impact of Fiber Losses 67 3.2.1 Loss Compensation 67 3.2.2 Lumped and Distributed Amplification 69 3.3 Impact of Fiber Dispersion 71 3.3.1 Chirped Gaussian Pulses 71 3.3.2 Pulses of Arbitrary Shape 74 3.3.3 Effects of Source Spectrum 76 3.3.4 Limitations on the Bit Rate 78 3.3.5 Dispersion compensation 81 3.4 Polarization-Mode Dispersion 82 3.4.1 Fibers with Constant Birefringence 83 3.4.2 Fibers with Random Birefringence 84 3.4.3 Jones-Matrix Formalism 87 3.4.4 Stokes-Space Description 89 3.4.5 Statistics of PMD 92 3.4.6 PMD-Induced Pulse Broadening 95 3.4.7 Higher-Order PMD Effects 96 3.5 Polarization-Dependent Losses 98 3.5.1 PDL Vector and Its Statistics 99 3.5.2 PDL-lnduced Pulse Distortion 101 Problems 103 References 104 4 Nonlinear Impairments 107 4.1 Self-Phase Modulation 107 4.1.1 Nonlinear Phase Shift 108 4.1.2 Spectral Broadening and Narrowing 111 4.1.3 Effects of Fiber Dispersion 113 4.1.4 Modulation Instability 114 4.2 Cross-Phase Modulation 117 4.2.1 XPM-Induced Phase Shift 117 4.2.2 Effects of Group-Velocity Mismatch 119 4.2.3 Effects of Group-Velocity Dispersion 121 4.2.4 Control of XPM Interaction 124 4.3 Four-Wave Mixing 125 4.3.1 FWM Efficiency 126 4.3.2 Control of FWM 128 4.4 Stimulated Raman Scattering 130 4.4.1 Raman-Gain Spectrum 131 4.4.2 Raman Threshold 132 4.5 Stimulated Brillouin Scattering 134 4.5.1 Brillouin Threshold 134 4.5.2 Control of SBS 136 4.6 Nonlinear Pulse Propagation 137 4.6.1 Moment Method 137 4.6.2 Variational Method 139 4.6.3 Specific Analytic Solutions 140 4.7 Polarization Effects 142 4.7.1 Vector NLS equation 142 4.7.2 Manakov Equation 144 Problems 145 References 146 5 Signal Recovery and Noise 151 5.1 Noise Sources 151 5.1.1 Shot Noise 152 5.1.2 Thermal Noise 153 5.2 Signal-to-Noise Ratio 154 5.2.1 Receivers with a p-i-n Photodiode 155 5.2.2 APD Receivers 156 5.3 Receiver Sensitivity 159 5.3.1 Bit-Error Rate 160 5.3.2 Minimum Average Power 163 5.3.3 Quantum Limit of Photodetection 165 5.4 Sensitivity Degradation 166 5.4.1 Finite Extinction Ratio 166 5.4.2 Intensity Noise of Lasers 168 5.4.3 Dispersive Pulse Broadening 170 5.4.4 Frequency Chirping 171 5.4.5 Timing Jitter 172 5.4.6 Eye-Closure Penalty 175 5.5 Forward Error Correction 176 5.5.1 Error-Correcting Codes 177 5.5.2 Coding Gain 177 5.5.3 Optimum Coding Overhead 178 Problems 181 References 182 6 Optical Amplifier Noise 185 6.1 Origin of Amplifier Noise 185 6.1.1 EDFA Noise 186 6.1.2 Distributed Amplification 189 6.2 Optical SNR 190 6.2.1 Lumped Amplification 190 6.2.2 Distributed Amplification 19i 6.3 Electrical SNR 193 6.3.1 ASE-Induced Current Fluctuations 193 6.3.2 Impact of ASE on SNR 194 6.3.3 Noise Figure of Distributed Amplifiers 196 6.3.4 Noise Buildup in an Amplifier Chain 198 6.4 Receiver Sensitivity and Q Factor 199 6.4.1 Bit-Error Rate 199 6.4.2 Non-Gaussian Receiver Noise 201 6.4.3 Relation between Q Factor and Optical SNR 202 6.5 Role of Dispersive and Nonlinear Effects 204 6.5.1 Noise Growth through Modulation Instability 204 6.5.2 Noise-Induced Signal Degradation 207 6.5.3 Noise-Induced Energy Fluctuations 210 6.5.4 Noise-Induced Frequency Fluctuations 211 6.5.5 Noise-Induced Timing Jitter 213 6.5.6 Jitter Reduction through Distributed Amplification 214 6.6 Periodically Amplified Lightwave Systems 216 6.6.1 Numerical Approach 216 6.6.2 Optimum Launched Power 219 Problems 221 References 222 7 Dispersion Management 225 7.1 Dispersion Problem and Its Solution 225 7.2 Dispersion-Compensating Fibers 227 7.2.1 Conditions for Dispersion Compensation 228 7.2.2 Dispersion Maps 229 7.2.3 DCF Designs 231 7.2.4 Reverse-Dispersion Fibers 234 7.3 Dispersion-Equalizing Filters 235 7.3.1 Gires-Toumois Filters 235 7.3.2 Mac h-Zehnder Filters 237 7.3.3 Other All-Pass Filters 239 7.4 Fiber Bragg Gratings 240 7.4.1 Constant-Period Gratings 240 7.4.2 Chirped Fiber Gratings 243 7.4.3 Sampled Gratings 246 7.5 Optical Phase Conjugation 250 7.5.1 Principle of Operation 250 7.5.2 Compensation of Self-Phase Modulation 250 7.5.3 Generation of Phase-Conjugated Signal 253 7.6 Other Schemes 256 7.6.1 Prechirp Technique 256 7.6.2 Novel Coding Techniques 259 7.6.3 Nonlinear Prechirp Techniques 260 7.6.4 Electronic Compensation Techniques 261 7.7 High-Speed Lightwave Systems 262 7.7.1 Tunable Dispersion Compensation 262 7.7.2 Higher-Order Dispersion Management 267 7.7.3 PMD Compensation 270 Problems 274 References 276 8 Nonlinearity Management 284 8.1 Role of Fiber Nonlinearity 284 8.1.1 System Design Issues 285 8.1.2 Semianalytic Approach 289 8.1.3 Soliton and Pseudo-linear Regimes 291 8.2 Solitons in Optical Fibers 293 8.2.1 Properties of Optical Solitons 293 8.2.2 Loss-Managed Solitons 297 8.3 Dispersion-Managed Solitons 301 8.3.1 Dispersion-Decreasing Fibers 301 8.3.2 Periodic Dispersion Maps 302 8.3.3 Design Issues 305 8.3.4 Timing Jitter 308 8.3.5 Control of Timing Jitter 310 8.4 Pseudo-linear Lightwave Systems 314 8.4.1 Intrachannel Nonlinear Effects 314 8.4.2 Intrachannel XPM 316 8.4.3 Intrachannel FWM 320 8.5 Control of Intrachannel Nonlinear Effects 324 8.5.1 Optimization of Dispersion Maps 324 8.5.2 Phase-A Item at ion Techniques 328 8.5.3 Polarization Bit Interleaving 330 8.6 High-Speed Lightwave Systems 332 8.6.1 OTDM Transmitters and Receivers 332 8.6.2 Performance of OTDM System 335 Problems 337 References 339 9 WDM Systems 346 9.1 Basic WDM Scheme 346 9.1.1 System Capacity and Spectral Efficiency 347 9.1.2 Bandwidth and Capacity of WDM Systems 348 9.2 Linear Degradation Mechanisms 351 9.2.1 Out-of-Band Linear Crosstalk 351 9.2.2 In-Band Linear Crosstalk 353 9.2.3 Filter-Induced Signal Distortion 356 9.3 Nonlinear Crosstalk 357 9.3.1 Raman Crosstalk 358 9.3.2 Four-Wave Mixing 363 9.4 Cross-Phase Modulation 366 9.4.1 Amplitude Fluctuations 366 9.4.2 Timing Jitter 369 9.5 Control of Nonlinear Effects 374 9.5.1 Optimization of Dispersion Maps 374 9.5.2 Use of Raman Amplification 378 9.5.3 Polarization Interleaving of Channels 381 9.5.4 Use of DPSK Formal 383 9.6 Major Design Issues 385 9.6.1 Spectral Efficiency 386 9.6.2 Dispersion Fluctuations 391 9.6.3 PMD and Polarization-Dependent Losses 393 9.6.4 Wavelength Stability and Other Issues 395 Problems 397 References 398 10 Optical Networks 404 10.1 Network Architecture and Topologies 404 10.1.1 Wide-Area Networks 404 10.1.2 Metropolitan-Area Networks 406 10.1.3 Local-Area Networks 407 10.2 Network Protocols and Layers 409 10.24 Evolution of Protocols 409 10.2.2 Evolution of WDM Networks 410 10.2.3 Network Planes 412 10.3 Wavelength-Routing Networks 413 10.34 Wavelength Switching and Its Limitations 414 10.3.2 Architecture of Optical Cross-Connects 414 10.3.3 Switching Technologies for Cross-Connects 417 10.4 Packet-Switched Networks 418 10.44 Optical Label Swapping 419 10.4.2 Techniques for Label Coding 420 10.4.3 Contention Resolution 424 10.5 Other Routing Techniques 425 10.54 Optical Burst Switching 426 10.5.2 Photonic Slot Routing 427 10.5.3 High-Speed TDM Networks 429 10.6 Distribution and Access Networks 431 10.64 Broadcast-and-Select Networks 431 10.6.2 Passive Optical Networks 433 Problems 436 References 437 Appendix A System of Units 442 Appendix B Software Package 444 Appendix C Acronyms 446 Index 449

About the Author :
GOVIND P. AGRAWAL, PhD, is a Professor of Optics at The Institute of Optics, University of Rochester, New York, and a Fellow of the Optical Society of America and the IEEE. Internationally recognized as an expert in his field, Dr. Agrawal has authored or coauthored more than 300 research papers, books, and monographs.


Best Sellers


Product Details
  • ISBN-13: 9780471215721
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: Wiley-Interscience
  • Height: 246 mm
  • No of Pages: 480
  • Returnable: N
  • Sub Title: Telecommunication Systems
  • Width: 163 mm
  • ISBN-10: 0471215724
  • Publisher Date: 15 Jul 2005
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Spine Width: 31 mm
  • Weight: 776 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Lightwave Technology: Telecommunication Systems
John Wiley & Sons Inc -
Lightwave Technology: Telecommunication Systems
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Lightwave Technology: Telecommunication Systems

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!