Buy Rheology by Christopher W. Macosko - Bookswagon UAE
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Mechanical engineering and materials > Materials science > Engineering: Mechanics of fluids > Rheology: Principles, Measurements, and Applications
Rheology: Principles, Measurements, and Applications

Rheology: Principles, Measurements, and Applications


     0     
5
4
3
2
1



International Edition


X
About the Book

If you use rheological measurements to characterize new materials, analyze non-Newtonian flow problems, or design plastic parts, or if you would like to use rheology to overcome a particular problem, this pragmatic volume will prove invaluable to your research. Rheology: Principles, Measurements, and Applications presents an extremly practical, timely, and accessible three-dimensional account of this subject. It has been specifically designed to enable researchers to understand and apply information from the latest rheological literature to their own applications. Divided into three sections, the book covers the essential criteria for selecting the best test types for various applications, for accurately interpreting results, and for determining other areas where rheology and rheological phenomena may be useful in your work. This book will be of greatest interest to polymer scientists and mechanical engineers, as well as students in these and related fields.

Table of Contents:
Part I. Constitutive Relations 1 1 Elastic Solid 5 Christopher W. Macosko 1.1 Introduction 5 1.2 The Stress Tensor 8 1.2.1 Notation 11 1.2.2 Symmetry 16 1.2.3 Pressure 18 1.3 Principal Stresses and Invariants 20 1.4 Finite Deformation Tensors 24 1.4.1 Finger Tensor 29 1.4.2 Strain Tensor 32 1.4.3 Inverse Deformation Tensors 32 1.4.4 Principal Strains 34 1.5 Neo-Hookean Solid 37 1.5.1 Uniaxial Extension 38 1.5.2 Simple Shear 40 1.6 General Elastic Solid 40 1.6.1 Strain‒Energy Function 42 1.6.2 Anisotropy 44 1.6.3 Rubber-like Liquids 45 1.7 Equations of Motion 45 1.7.1 Mass Balance 45 1.7.2 Momentum Balance 47 1.8 Boundary Conditions 52 1.9 Summary 58 1.10 Exercises 59 References 62 2 Viscous Liquid 65 Christopher W. Macosko 2.1 Introduction 65 2.2 Velocity Gradient 68 2.2.1 Rate of Deformation Tensor 72 2.3 Newtonian Fluid 77 2.3.1 Uniaxial Extension 79 2.4 General Viscous Fluid 83 2.4.1 Power Law 84 2.4.2 Cross Model 86 2.4.3 Other Viscous Models 86 2.4.4 The Importance of II2D 89 2.4.5 Extensional Thickening Models 91 2.5 Plastic Behavior 92 2.5.1 Other Viscoplastic Models 95 2.6 Balance Equations 98 2.6.1 Equations of Motion 99 2.6.2 Boundary Conditions 99 2.6.3 Energy Equation 100 2.6.4 Temperature and Pressure Dependence Viscosity 100 2.7 Summary 104 2.8 Exercises 105 References 106 3 Linear Viscoelasticity 109 Christopher W. Macosko 3.1 Introduction 109 3.2 General Linear Viscoelastic Model 111 3.2.1 Relaxation Spectrum 115 3.2.2 Linear Viscoelasticity in Three Dimensions 115 3.2.3 Differential Form 115 3.3 Small Strain Material Functions 117 3.3.1 Stress Relaxation 118 3.3.2 Creep 119 3.3.3 Sinusoidal Oscillations 121 3.4 Exctciscs 126 Appendix 3A 127 Robert B. Secor Curve Fitting of Relaxation Modulus 127 Approximating Form 127 Error Measure 128 Search Procedures 129 References 133 4 Nonlinear Viscoelasticity 135 Ronald G. Larson 4.1 Introduction 135 4.2 Nonlinear Phenomena 138 4.2.1 Normal Stress Difference in Shear 138 4.2.2 Shear Thinning 139 4.2.3 Interrelations Between Shear Functions 140 4.2.4 Extensional Thickening 142 4.3 Simple Nonlinear Constitutive Equations 146 4.3.1 Second-Order Fluid 146 4.3.2 Upper-Converted Maxwell Equation 149 4.3.3 Lodge Integral Equation 153 4.4 More Accurate Constitutive Equations 158 4.4.1 Integral Constitutive Equations 158 4.4.2 Maxwell-Type Differential Constitutive Equations 166 4.5 Summary 170 4.6 Exercises 171 References 172 Part II Measurements: Rheometry 175 5 Shear Rheometry: Drag Flows 181 Christopher W. Macosko 5.1 Introduction 181 5.2 Sliding Plates, Falling Ball 184 5.2.1 Falling Cylinder 185 5.2.1 Falling Ball 187 5.2.3 Rolling Ball 187 5.3 Concentric Cylinder Rheometer 188 5.3.1 Shear Stress 190 5.3.2 Shear Strain and Rate 191 5.3.3 Normal Stresses in Couette Flow 195 5.3.4 Rod Climbing 198 5.3.5 End Effects 200 5.3.6 Secondary Flows 202 5.3.7 Shear Healing in Couette Flow 203 5.4 Cone and Plate Rheometer 205 5.4.1 Shear Stress 206 5.4.2 Shear Strain Rate 207 5.4.3 Normal Stresses 208 5.4.4 Inertia and Secondary Flow 209 5.4.5 Edge Effects with Cone and Plate 213 5 4.6 Shear Heating 216 5.4.7 Summary 216 5.5 Parallel Disks 217 5.5.1 Normal Stresses 221 5.6 Drag Flow Indexers 222 5.6.1 Rotating Disk in a Sea of Fluid 223 5.6.2 Rotating Vane 224 5.6.3 Helical Screw Rheometer 224 5.6.4 Instrumented Mixers 225 5.7 Eccentric Rotating Geometries 226 5.7.1 Rotating Cantiliver Rod 227 5.7.2 Eccentric Rotating Disks 227 5.7.3 Other Eccentric Geometries 231 References 231 6 Shear Rheometry: Pressure‒Driven Flows 237 Christopher W. Macosko 6.1 Introduction 237 6.2 Capillary Rheometer 238 6.2.1 Shear Rate 240 6.2.2 Wall Slip. Melt Fracture 244 6.2.3 True Shear Stress 247 6.2.4 Shear Heating 252 6.2.5 Extrudate Swell 254 6.2.6 Melt Index 256 6.3 Slit Rheometry 257 6.3.1 Normal Stresses 260 6.3.2 Exit Pressure 261 6.3.3 Pressure Hole 262 6.4 Other Pressure Rheometers 266 6.4.1 Axial Annular Flow 266 6.4.2 Tangential Annular Flow 267 6.4.3 Tilted Open Channel 268 6.4.4 Squeezing Flow 270 6.5 Comparison of Shear Methods 275 6.6 Summary 277 References 280 7 Extensional Rheometry 285 Christopher W. Macosko 7.1 Introduction 285 7.2 Simple Extension 288 7.2.1 End Chimps 291 7.2.2 Rotating Clamps 292 7.2.3 Buoyancy Baths 294 7.2.4 Spinning Drop 296 7.3 Lubricated Compression 297 7.3.1 Planar Squeezing 303 7.4 Sheet Stretching, Multiaxial Extension 303 7.4.1 Rotating Clamps 304 7.4.2 Inflation Methods 306 7.5 Fiber Spinning 308 7.5.7 Tubeless Siphon 315 7.6 Bubble Collapse 317 7.7 Stagnation Flows 320 7.7.1 Lubricated Dies 322 7.7.2 Unlubricated Dies 322 7.7.3 Opposed Nozzles 323 7.8 Entrance Flows 326 7.9 Summary 332 References 333 8 Rheometer Design 337 Christopher W. Macosko 8.1 Introduction 337 8.2 Drag Flow Rheometers 338 8.2.1 Controlled Strain 339 8.2.2 Torque Measurement 342 8.2.3 Normal Stresses 345 8.2.4 Alignment 347 8.2.5 Controlled Stress 349 8.2.6 Environmental Control 352 8.3 Data Analysis 357 8.3.1 Sinusoidal Oscillations 359 8.3.2 Transient 363 8.4 Pressure-Driven Rheometers 364 8.5 Extensional Rheometers 368 8.6 Process Line Rheometers 370 8.7 Summary 373 References 374 9 Rheo-Optics: Flow Birefringence 379 Timothy P. Lodge 9.1 Introduction 379 9.2 Review of Optical Phenomena 381 9.2.1 Absorption and Emission Spectroscopies 382 9.2.2 Scattering Techniques 382 9.2.3 Birefringence and Dichroism 384 9.3 Polarized Light 386 9.3.1 Transmission Through a Series of Optical Elements 390 9.4 Flow Birefringence: Principles and Practice 393 9.4.1 The Stress–Optical Relation 393 9.4.2 Range of Applicability of the Stress–Optical Relation 397 9.4.3 Geometries for Measuring Flow Birefringence 400 9.4.4 Birefringence in Steady and Transient Couette Flow 403 9.4.5 Birefringence in Oscillatory Shear Flow 405 9.4.6 Experimental Considerations 407 9.5 Flow Birefringence: Applications 408 9.5.1 Stress Field Visualization 408 9.5.2 Extensional Flow 409 9.5.3 Dynamics of Isolated, Flexible Homopolymers 409 9.5.4 Dynamics of Isolated Block Copolymers 412 9.5.5 Dynamics of Block Copolymer Melts 415 9.5.6 Dynamics of a Binary Blend 415 9.5.7 Birefringence in Transient Flows 416 9.5.8 Rheo-Optics of Suspensions 416 9.5.9 Rotational Dynamics of Rigid Rods 417 9.6 Summary 419 References 419 Part III. Applications 423 10 Suspension Rheology 425 Jan Mewis and Christopher W. Macosko 10.1 Introduction 425 10.2 Dilute Suspensions of Spheres 428 10.2.1 Hard Spheres 428 10.2.2 Particle Migration 430 10.2.3 Emulsions 434 10.2.4 Deformable Spheres 437 10.3 Particle–Fluid Interactions: Dilute Spheroids 439 10.3.1 Orientation Distribution 440 10.3.2 Constitutive Relations for Spheroids 443 10.4 Particle‒Particle Interactions 449 10.4.1 Dispersion Forces 450 10.4.2 Electrostatic Forces 451 10.4.3 Polymeric (Steric) Forces 452 10.4.4 Scaling 454 10.5 Brownian Hard Particles 455 10.5.1 Monodisperse Hard Spheres 455 10.5.2 Particle Size Distribution 458 10.5.3 Nonspherical Particles 459 10.5.4 Non-Newtonian Media 460 10.5.5 Extensional Flow of Ellipsoids 460 10.6 Stable Colloidal Suspensions 461 10.6.1 Electrostatic Stabilization 462 10 6.2 Polymeric (Steric) Stabilization 464 10.7 Flocculated Systems 465 10.7.1 Structure in Flocculated Dispersions 465 10.7.2 Static Properties 467 10.7.3 Flow Behavior 468 10.8 Summary 470 References 471 11 Rheology of Polymeric Liquids 475 Matthew Tirrell 11.1 Introduction 475 11.2 Polymer Chain Conformation 476 11.3 Zero Shear Viscosity 479 11.3.1 Dilute Solution 479 11.3.2 Nondilute Polymeric Liquids 489 11.3.3 Coil Overlap 482 11.4 Rheology of Dilute Polymer Solutions 487 11.4.1 Elastic Dumbbell 487 11 4.2 Rouse and Other Multihead Models 495 11.5 Concentrated Solutions and Melts 497 11.5.1 Entanglements 497 11.5.2 Reptation Model 502 11.5.3 Effects of Long Chain Branching 505 11.5.4 Effect of Molecular Weight Distribution 506 11.6 Temperature Dependence 510 11.7 Summary 512 References 512 Appendix Solutions to Exercises Chapter 1 515 Chapter 2 521 Chapter 3 527 Chapter 4 531 Index 535 Measurements: Rheometry 

About the Author :
Christopher W. Macosko is the author of Rheology: Principles, Measurements, and Applications, published by Wiley.


Best Sellers


Product Details
  • ISBN-13: 9780471185758
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: Wiley-VCH Publishers Inc.,U.S.
  • Height: 257 mm
  • No of Pages: 576
  • Returnable: N
  • Sub Title: Principles, Measurements, and Applications
  • Width: 184 mm
  • ISBN-10: 0471185752
  • Publisher Date: 17 Aug 1994
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Spine Width: 33 mm
  • Weight: 1246 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Rheology: Principles, Measurements, and Applications
John Wiley & Sons Inc -
Rheology: Principles, Measurements, and Applications
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Rheology: Principles, Measurements, and Applications

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!