The Duffing Equation
Home > Mathematics and Science Textbooks > Physics > Classical mechanics > The Duffing Equation: Nonlinear Oscillators and their Behaviour
The Duffing Equation: Nonlinear Oscillators and their Behaviour

The Duffing Equation: Nonlinear Oscillators and their Behaviour


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Table of Contents:
List of Contributors. Preface. 1 Background: On Georg Duffing and the Duffing Equation (Ivana Kovacic and Michael J. Brennan). 1.1 Introduction. 1.2 Historical perspective. 1.3 A brief biography of Georg Duffing. 1.4 The work of Georg Duffing. 1.5 Contents of Duffing's book. 1.6 Research inspired by Duffing’s work. 1.7 Some other books on nonlinear dynamics. 1.8 Overview of this book. References. 2 Examples of Physical Systems Described by the Duffing Equation (Michael J. Brennan and Ivana Kovacic). 2.1 Introduction. 2.2 Nonlinear stiffness. 2.3 The pendulum. 2.4 Example of geometrical nonlinearity. 2.5 A system consisting of the pendulum and nonlinear stiffness. 2.6 Snap-through mechanism. 2.7 Nonlinear isolator. 2.8 Large deflection of a beam with nonlinear stiffness. 2.9 Beam with nonlinear stiffness due to inplane tension. 2.10 Nonlinear cable vibrations. 2.11 Nonlinear electrical circuit. 2.12 Summary. References. 3 Free Vibration of a Duffing Oscillator with Viscous Damping (Hiroshi Yabuno). 3.1 Introduction. 3.2 Fixed points and their stability. 3.3 Local bifurcation analysis. 3.4 Global analysis for softening nonlinear stiffness (γ< 0). 3.5 Global analysis for hardening nonlinear stiffness (γ< 0). 3.6 Summary. Acknowledgments. References. 4 Analysis Techniques for the Various Forms of the Duffing Equation (Livija Cveticanin). 4.1 Introduction. 4.2 Exact solution for free oscillations of the Duffing equation with cubic nonlinearity. 4.3 The elliptic harmonic balance method. 4.4 The elliptic Galerkin method. 4.5 The straightforward expansion method. 4.6 The elliptic Lindstedt–Poincaré method. 4.7 Averaging methods. 4.8 Elliptic homotopy methods. 4.9 Summary. References. Appendix AI: Jacob elliptic function and elliptic integrals. Appendix 4AII: The best L2 norm approximation. 5 Forced Harmonic Vibration of a Duffing Oscillator with Linear Viscous Damping (Tamas Kalmar-Nagy and Balakumar Balachandran). 5.1 Introduction. 5.2 Free and forced responses of the linear oscillator. 5.3 Amplitude and phase responses of the Duffing oscillator. 5.4 Periodic solutions, Poincare sections, and bifurcations. 5.5 Global dynamics. 5.6 Summary. References. 6 Forced Harmonic Vibration of a Duffing Oscillator with Different Damping Mechanisms (Asok Kumar Mallik). 6.1 Introduction. 6.2 Classification of nonlinear characteristics. 6.3 Harmonically excited Duffing oscillator with generalised damping. 6.4 Viscous damping. 6.5 Nonlinear damping in a hardening system. 6.6 Nonlinear damping in a softening system. 6.7 Nonlinear damping in a double-well potential oscillator. 6.8 Summary. Acknowledgments. References. 7 Forced Harmonic Vibration in a Duffing Oscillator with Negative Linear Stiffness and Linear Viscous Damping (Stefano Lenci and Giuseppe Rega). 7.1 Introduction. 7.2 Literature survey. 7.3 Dynamics of conservative and nonconservative systems. 7.4 Nonlinear periodic oscillations. 7.5 Transition to complex response. 7.6 Nonclassical analyses. 7.7 Summary. References. 8 Forced Harmonic Vibration of an Asymmetric Duffing Oscillator (Ivana Kovacic and Michael J. Brennan). 8.1 Introduction. 8.2 Models of the systems under consideration. 8.3 Regular response of the pure cubic oscillator. 8.4 Regular response of the single-well Helmholtz–Duffing oscillator. 8.5 Chaotic response of the pure cubic oscillator. 8.6 Chaotic response of the single-well Helmholtz–Duffing oscillator. 8.7 Summary. References. Appendix Translation of Sections from Duffing's Original Book (Keith Worden and Heather Worden). Glossary. Index.

About the Author :
Michael J Brennan, Dynamics Group, Institute of Sound and Vibration Research (ISVR), University of Southampton, UK Professor Michael Brennan holds a personal chair in Engineering Dynamics and is Chairman of the Dynamics Research in the ISVR at Southampton University. He joined Southampton in 1995 after a 23 year career as an engineer in the Royal Navy. Since 1995 Professor Brennan has worked on several aspects of sound and vibration, specialising in the use of smart structures for active vibration control, active control of structurally-radiated sound and the condition monitoring of gear boxes by the analysis of vibration data and rotor dynamics. Mike Brennan has edited 3 conference proceedings, 3 book chapters, and over 200 academic journal and conference papers. Ivana Kovavic, Department of Mathematics, Faculty of Technical Sciences, University of Novi Sad, Serbia Ivana Kovavic is an associate professor within the Department of Mathematics at the University of Novi Sad in Serbia. She has authored two books in the Polish language, 30 journal and conference papers and edited 1 conference proceedings.

Review :
"The book is a very well written and tightly edited exposition, not only of Duffing equations, but also of the general behavior of nonlinear oscillators. The book is likely to be of interest and use to students, engineers, and researchers in the ongoing studies of nonlinear phenomena. The book cites over 340 references." (Zentralblatt MATH, 2011)  


Best Sellers


Product Details
  • ISBN-13: 9780470977835
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: John Wiley & Sons Inc
  • Language: English
  • Sub Title: Nonlinear Oscillators and their Behaviour
  • ISBN-10: 0470977833
  • Publisher Date: 11 Feb 2011
  • Binding: Digital (delivered electronically)
  • No of Pages: 392


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
The Duffing Equation: Nonlinear Oscillators and their Behaviour
John Wiley & Sons Inc -
The Duffing Equation: Nonlinear Oscillators and their Behaviour
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

The Duffing Equation: Nonlinear Oscillators and their Behaviour

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!