Introduction to Nanomaterials and Devices
Home > Science, Technology & Agriculture > Electronics and communications engineering > Electronics engineering > Electronic devices and materials > Introduction to Nanomaterials and Devices
Introduction to Nanomaterials and Devices

Introduction to Nanomaterials and Devices

|
     0     
5
4
3
2
1




Available


About the Book

An invaluable introduction to nanomaterials and their applications Offering the unique approach of applying traditional physics concepts to explain new phenomena, Introduction to Nanomaterials and Devices provides readers with a solid foundation on the subject of quantum mechanics and introduces the basic concepts of nanomaterials and the devices fabricated from them. Discussion begins with the basis for understanding the basic properties of semiconductors and gradually evolves to cover quantum structures—including single, multiple, and quantum wells—and the properties of nanomaterial systems, such as quantum wires and dots. Written by a renowned specialist in the field, this book features: An introduction to the growth of bulk semiconductors, semiconductor thin films, and semiconductor nanomaterials Information on the application of quantum mechanics to nanomaterial structures and quantum transport Extensive coverage of Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein stastistics An in-depth look at optical, electrical, and transport properties Coverage of electronic devices and optoelectronic devices Calculations of the energy levels in periodic potentials, quantum wells, and quantum dots Introduction to Nanomaterials and Devices provides essential groundwork for understanding the behavior and growth of nanomaterials and is a valuable resource for students and practitioners in a field full of possibilities for innovation and invention.

Table of Contents:
Preface xiii Fundamental Constants xvii 1 Growth of Bulk, Thin Films, and Nanomaterials 1 1.1 Introduction, 1 1.2 Growth of Bulk Semiconductors, 5 1.2.1 Liquid-Encapsulated Czochralski (LEC) Method, 5 1.2.2 Horizontal Bridgman Method, 11 1.2.3 Float-Zone Growth Method, 14 1.2.4 Lely Growth Method, 16 1.3 Growth of Semiconductor Thin Films, 18 1.3.1 Liquid-Phase Epitaxy Method, 19 1.3.2 Vapor-Phase Epitaxy Method, 20 1.3.3 Hydride Vapor-Phase Epitaxial Growth of Thick GaN Layers, 22 1.3.4 Pulsed Laser Deposition Technique, 25 1.3.5 Molecular Beam Epitaxy Growth Technique, 27 1.4 Fabrication and Growth of Semiconductor Nanomaterials, 46 1.4.1 Nucleation, 47 1.4.2 Fabrications of Quantum Dots, 55 1.4.3 Epitaxial Growth of Self-Assembly Quantum Dots, 56 1.5 Colloidal Growth of Nanocrystals, 61 1.6 Summary, 63 Problems, 64 Bibliography, 67 2 Application of Quantum Mechanics to Nanomaterial Structures 68 2.1 Introduction, 68 2.2 The de Broglie Relation, 71 2.3 Wave Functions and Schr¨odinger Equation, 72 2.4 Dirac Notation, 74 2.4.1 Action of a Linear Operator on a Bra, 77 2.4.2 Eigenvalues and Eigenfunctions of an Operator, 78 2.4.3 The Dirac δ-Function, 78 2.4.4 Fourier Series and Fourier Transform in Quantum Mechanics, 81 2.5 Variational Method, 82 2.6 Stationary States of a Particle in a Potential Step, 83 2.7 Potential Barrier with a Finite Height, 88 2.8 Potential Well with an Infinite Depth, 92 2.9 Finite Depth Potential Well, 94 2.10 Unbound Motion of a Particle (E > V0) in a Potential Well With a Finite Depth, 98 2.11 Triangular Potential Well, 100 2.12 Delta Function Potentials, 103 2.13 Transmission in Finite Double Barrier Potential Wells, 108 2.14 Envelope Function Approximation, 112 2.15 Periodic Potential, 117 2.15.1 Bloch’s Theorem, 119 2.15.2 The Kronig–Penney Model, 119 2.15.3 One-Electron Approximation in a Periodic Dirac δ-Function, 123 2.15.4 Superlattices, 126 2.16 Effective Mass, 130 2.17 Summary, 131 Problems, 132 Bibliography, 134 3 Density of States in Semiconductor Materials 135 3.1 Introduction, 135 3.2 Distribution Functions, 138 3.3 Maxwell–Boltzmann Statistic, 139 3.4 Fermi–Dirac Statistics, 142 3.5 Bose–Einstein Statistics, 145 3.6 Density of States, 146 3.7 Density of States of Quantum Wells, Wires, and Dots, 152 3.7.1 Quantum Wells, 152 3.7.2 Quantum Wires, 155 3.7.3 Quantum Dots, 158 3.8 Density of States of Other Systems, 159 3.8.1 Superlattices, 160 3.8.2 Density of States of Bulk Electrons in the Presence of a Magnetic Field, 161 3.8.3 Density of States in the Presence of an Electric Field, 163 3.9 Summary, 168 Problems, 168 Bibliography, 170 4 Optical Properties 171 4.1 Fundamentals, 172 4.2 Lorentz and Drude Models, 176 4.3 The Optical Absorption Coefficient of the Interband Transition in Direct Band Gap Semiconductors, 179 4.4 The Optical Absorption Coefficient of the Interband Transition in Indirect Band Gap Semiconductors, 185 4.5 The Optical Absorption Coefficient of the Interband Transition in Quantum Wells, 186 4.6 The Optical Absorption Coefficient of the Interband Transition in Type II Superlattices, 189 4.7 The Optical Absorption Coefficient of the Intersubband Transition in Multiple Quantum Wells, 191 4.8 The Optical Absorption Coefficient of the Intersubband Transition in GaN/AlGaN Multiple Quantum Wells, 196 4.9 Electronic Transitions in Multiple Quantum Dots, 197 4.10 Selection Rules, 201 4.10.1 Electron–Photon Coupling of Intersubband Transitions in Multiple Quantum Wells, 201 4.10.2 Intersubband Transition in Multiple Quantum Wells, 202 4.10.3 Interband Transition, 202 4.11 Excitons, 204 4.11.1 Excitons in Bulk Semiconductors, 205 4.11.2 Excitons in Quantum Wells, 211 4.11.3 Excitons in Quantum Dots, 213 4.12 Cyclotron Resonance, 214 4.13 Photoluminescence, 220 4.14 Basic Concepts of Photoconductivity, 225 4.15 Summary, 229 Problems, 230 Bibliography, 232 5 Electrical and Transport Properties 233 5.1 Introduction, 233 5.2 The Hall Effect, 237 5.3 Quantum Hall and Shubnikov-de Haas Effects, 241 5.3.1 Shubnikov-de Haas Effect, 243 5.3.2 Quantum Hall Effect, 246 5.4 Charge Carrier Transport in Bulk Semiconductors, 249 5.4.1 Drift Current Density, 249 5.4.2 Diffusion Current Density, 254 5.4.3 Generation and Recombination, 257 5.4.4 Continuity Equation, 259 5.5 Boltzmann Transport Equation, 264 5.6 Derivation of Transport Coefficients Using the Boltzmann Transport Equation, 268 5.6.1 Electrical Conductivity and Mobility in n-type Semiconductors, 270 5.6.2 Hall Coefficient, RH, 273 5.7 Scattering Mechanisms in Bulk Semiconductors, 274 5.7.1 Scattering from an Ionized Impurity, 276 5.7.2 Scattering from a Neutral Impurity, 277 5.7.3 Scattering from Acoustic Phonons: Deformation Potential, 277 5.7.4 Scattering from Acoustic Phonons: Piezoelectric Potential, 278 5.7.5 Optical Phonon Scattering: Polar and Nonpolar, 278 5.7.6 Scattering from Short-Range Potentials, 279 5.7.7 Scattering from Dipoles, 281 5.8 Scattering in a Two-Dimensional Electron Gas, 281 5.8.1 Scattering by Remote Ionized Impurities, 283 5.8.2 Scattering by Interface Roughness, 285 5.8.3 Electron–Electron Scattering, 286 5.9 Coherence and Mesoscopic Systems, 287 5.10 Summary, 293 Problems, 294 Bibliography, 297 6 Electronic Devices 298 6.1 Introduction, 298 6.2 Schottky Diode, 301 6.3 Metal–Semiconductor Field-Effect Transistors (MESFETs), 305 6.4 Junction Field-Effect Transistor (JFET), 314 6.5 Heterojunction Field-Effect Transistors (HFETs), 318 6.6 GaN/AlGaN Heterojunction Field-Effect Transistors (HFETs), 322 6.7 Heterojunction Bipolar Transistors (HBTs), 325 6.8 Tunneling Electron Transistors, 328 6.9 The p–n Junction Tunneling Diode, 329 6.10 Resonant Tunneling Diodes, 334 6.11 Coulomb Blockade, 338 6.12 Single-Electron Transistor, 340 6.13 Summary, 353 Problems, 354 Bibliography, 357 7 Optoelectronic Devices 359 7.1 Introduction, 359 7.2 Infrared Quantum Detectors, 361 7.2.1 Figures of Merit, 361 7.2.2 Noise in Photodetectors, 366 7.2.3 Multiple Quantum Well Infrared Photodetectors (QWIPs), 369 7.2.4 Infrared Photodetectors Based on Multiple Quantum Dots, 380 7.3 Light-Emitting Diodes, 387 7.4 Semiconductor Lasers, 392 7.4.1 Basic Principles, 392 7.4.2 Semiconductor Heterojunction Lasers, 399 7.4.3 Quantum Well Edge-Emitting Lasers, 403 7.4.4 Vertical Cavity Surface-Emitting Lasers, 406 7.4.5 Quantum Cascade Lasers, 409 7.4.6 Quantum Dots Lasers, 412 7.5 Summary, 416 Problems, 418 Bibliography, 419 Appendix A Derivation of Heisenberg Uncertainty Principle 420 Appendix B Perturbation 424 Bibliography, 428 Appendix C Angular Momentum 429 Appendix D Wentzel-Kramers-Brillouin (WKB) Approximation 431 Bibliography, 436 Appendix E Parabolic Potential Well 437 Bibliography, 441 Appendix F Transmission Coefficient in Superlattices 442 Appendix G Lattice Vibrations and Phonons 445 Bibliography, 455 Appendix H Tunneling Through Potential Barriers 456 Bibliography, 461 Index 463


Best Sellers


Product Details
  • ISBN-13: 9780470927076
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: Wiley-Interscience
  • Height: 243 mm
  • No of Pages: 488
  • Returnable: N
  • Weight: 803 gr
  • ISBN-10: 0470927070
  • Publisher Date: 06 Jan 2012
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Spine Width: 29 mm
  • Width: 161 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Introduction to Nanomaterials and Devices
John Wiley & Sons Inc -
Introduction to Nanomaterials and Devices
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Introduction to Nanomaterials and Devices

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!