MIMO-OFDM Wireless Communications with MATLAB - Bookswagon
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Electronics and communications engineering > Communications engineering / telecommunications > WAP (wireless) technology > MIMO-OFDM Wireless Communications with MATLAB: (IEEE Press)
MIMO-OFDM Wireless Communications with MATLAB: (IEEE Press)

MIMO-OFDM Wireless Communications with MATLAB: (IEEE Press)


     4.3  |  12 Reviews 
5
4
3
2
1



International Edition


X
About the Book

MIMO-OFDM is a key technology for next-generation cellular communications (3GPP-LTE, Mobile WiMAX, IMT-Advanced) as well as wireless LAN (IEEE 802.11a, IEEE 802.11n), wireless PAN (MB-OFDM), and broadcasting (DAB, DVB, DMB). In MIMO-OFDM Wireless Communications with MATLAB, the authors provide a comprehensive introduction to the theory and practice of wireless channel modeling, OFDM, and MIMO, using MATLAB programs to simulate the various techniques on MIMO-OFDM systems. One of the only books in the area dedicated to explaining simulation aspects Covers implementation to help cement the key concepts Uses materials that have been classroom-tested in numerous universities Provides the analytic solutions and practical examples with downloadable MATLAB codes Simulation examples based on actual industry and research projects Presentation slides with key equations and figures for instructor use MIMO-OFDM Wireless Communications with MATLAB is a key text for graduate students in wireless communications. Professionals and technicians in wireless communication fields, graduate students in signal processing, as well as senior undergraduates majoring in wireless communications will find this book a practical introduction to the MIMO-OFDM techniques. Instructor materials and MATLAB code examples available for download at www.wiley.com/go/chomimo

Table of Contents:
Preface xiii Limits of Liability and Disclaimer of Warranty of Software xv 1 The Wireless Channel: Propagation and Fading 1 1.1 Large-Scale Fading 4 1.1.1 General Path Loss Model 4 1.1.2 Okumura/Hata Model 8 1.1.3 IEEE 802.16d Model 10 1.2 Small-Scale Fading 15 1.2.1 Parameters for Small-Scale Fading 15 1.2.2 Time-Dispersive vs. Frequency-Dispersive Fading 16 1.2.3 Statistical Characterization and Generation of Fading Channel 19 2 SISO Channel Models 25 2.1 Indoor Channel Models 25 2.1.1 General Indoor Channel Models 26 2.1.2 IEEE 802.11 Channel Model 28 2.1.3 Saleh-Valenzuela (S-V) Channel Model 30 2.1.4 UWB Channel Model 35 2.2 Outdoor Channel Models 40 2.2.1 FWGN Model 41 2.2.2 Jakes Model 50 2.2.3 Ray-Based Channel Model 54 2.2.4 Frequency-Selective Fading Channel Model 61 2.2.5 SUI Channel Model 65 3 MIMO Channel Models 71 3.1 Statistical MIMO Model 71 3.1.1 Spatial Correlation 73 3.1.2 PAS Model 76 3.2 I-METRA MIMO Channel Model 84 3.2.1 Statistical Model of Correlated MIMO Fading Channel 84 3.2.2 Generation of Correlated MIMO Channel Coefficients 88 3.2.3 I-METRA MIMO Channel Model 90 3.2.4 3GPP MIMO Channel Model 94 3.3 SCM MIMO Channel Model 97 3.3.1 SCM Link-Level Channel Parameters 98 3.3.2 SCM Link-Level Channel Modeling 102 3.3.3 Spatial Correlation of Ray-Based Channel Model 105 4 Introduction to OFDM 111 4.1 Single-Carrier vs. Multi-Carrier Transmission 111 4.1.1 Single-Carrier Transmission 111 4.1.2 Multi-Carrier Transmission 115 4.1.3 Single-Carrier vs. Multi-Carrier Transmission 120 4.2 Basic Principle of OFDM 121 4.2.1 OFDM Modulation and Demodulation 121 4.2.2 OFDM Guard Interval 126 4.2.3 OFDM Guard Band 132 4.2.4 BER of OFDM Scheme 136 4.2.5 Water-Filling Algorithm for Frequency-Domain Link Adaptation 139 4.3 Coded OFDM 142 4.4 OFDMA: Multiple Access Extensions of OFDM 143 4.4.1 Resource Allocation – Subchannel Allocation Types 145 4.4.2 Resource Allocation – Subchannelization 146 4.5 Duplexing 150 5 Synchronization for OFDM 153 5.1 Effect of STO 153 5.2 Effect of CFO 156 5.2.1 Effect of Integer Carrier Frequency Offset (IFO) 159 5.2.2 Effect of Fractional Carrier Frequency Offset (FFO) 160 5.3 Estimation Techniques for STO 162 5.3.1 Time-Domain Estimation Techniques for STO 162 5.3.2 Frequency-Domain Estimation Techniques for STO 168 5.4 Estimation Techniques for CFO 170 5.4.1 Time-Domain Estimation Techniques for CFO 170 5.4.2 Frequency-Domain Estimation Techniques for CFO 173 5.5 Effect of Sampling Clock Offset 177 5.5.1 Effect of Phase Offset in Sampling Clocks 177 5.5.2 Effect of Frequency Offset in Sampling Clocks 178 5.6 Compensation for Sampling Clock Offset 178 5.7 Synchronization in Cellular Systems 180 5.7.1 Downlink Synchronization 180 5.7.2 Uplink Synchronization 183 6 Channel Estimation 187 6.1 Pilot Structure 187 6.1.1 Block Type 187 6.1.2 Comb Type 188 6.1.3 Lattice Type 189 6.2 Training Symbol-Based Channel Estimation 190 6.2.1 LS Channel Estimation 190 6.2.2 MMSE Channel Estimation 191 6.3 DFT-Based Channel Estimation 195 6.4 Decision-Directed Channel Estimation 199 6.5 Advanced Channel Estimation Techniques 199 6.5.1 Channel Estimation Using a Superimposed Signal 199 6.5.2 Channel Estimation in Fast Time-Varying Channels 201 6.5.3 EM Algorithm-Based Channel Estimation 204 6.5.4 Blind Channel Estimation 206 7 PAPR Reduction 209 7.1 Introduction to PAPR 209 7.1.1 Definition of PAPR 210 7.1.2 Distribution of OFDM Signal 216 7.1.3 PAPR and Oversampling 218 7.1.4 Clipping and SQNR 222 7.2 PAPR Reduction Techniques 224 7.2.1 Clipping and Filtering 224 7.2.2 PAPR Reduction Code 231 7.2.3 Selective Mapping 233 7.2.4 Partial Transmit Sequence 234 7.2.5 Tone Reservation 238 7.2.6 Tone Injection 239 7.2.7 DFT Spreading 241 8 Inter-Cell Interference Mitigation Techniques 251 8.1 Inter-Cell Interference Coordination Technique 251 8.1.1 Fractional Frequency Reuse 251 8.1.2 Soft Frequency Reuse 254 8.1.3 Flexible Fractional Frequency Reuse 255 8.1.4 Dynamic Channel Allocation 256 8.2 Inter-Cell Interference Randomization Technique 257 8.2.1 Cell-Specific Scrambling 257 8.2.2 Cell-Specific Interleaving 258 8.2.3 Frequency-Hopping OFDMA 258 8.2.4 Random Subcarrier Allocation 260 8.3 Inter-Cell Interference Cancellation Technique 260 8.3.1 Interference Rejection Combining Technique 260 8.3.2 IDMA Multiuser Detection 262 9 MIMO: Channel Capacity 263 9.1 Useful Matrix Theory 263 9.2 Deterministic MIMO Channel Capacity 265 9.2.1 Channel Capacity when CSI is Known to the Transmitter Side 266 9.2.2 Channel Capacity when CSI is Not Available at the Transmitter Side 270 9.2.3 Channel Capacity of SIMO and MISO Channels 271 9.3 Channel Capacity of Random MIMO Channels 272 10 Antenna Diversity and Space-Time Coding Techniques 281 10.1 Antenna Diversity 281 10.1.1 Receive Diversity 283 10.1.2 Transmit Diversity 287 10.2 Space-Time Coding (STC): Overview 287 10.2.1 System Model 287 10.2.2 Pairwise Error Probability 289 10.2.3 Space-Time Code Design 292 10.3 Space-Time Block Code (STBC) 294 10.3.1 Alamouti Space-Time Code 294 10.3.2 Generalization of Space-Time Block Coding 298 10.3.3 Decoding for Space-Time Block Codes 302 10.4 Space-Time Trellis Code 307 10.4.1 Space-Time Trellis Encoder 307 10.4.2 Space-Time Trellis Code: Illustrative Example 310 11 Signal Detection for Spatially Multiplexed MIMO Systems 319 11.1 Linear Signal Detection 319 11.1.1 ZF Signal Detection 320 11.1.2 MMSE Signal Detection 321 11.2 OSIC Signal Detection 322 11.3 ML Signal Detection 327 11.4 Sphere Decoding Method 329 11.5 QRM-MLD Method 339 11.6 Lattice Reduction-Aided Detection 344 11.6.1 Lenstra-Lenstra-Lovasz (LLL) Algorithm 345 11.6.2 Application of Lattice Reduction 349 11.7 Soft Decision for MIMO Systems 352 11.7.1 Log-Likelihood-Ratio (LLR) for SISO Systems 353 11.7.2 LLR for Linear Detector-Based MIMO System 358 11.7.3 LLR for MIMO System with a Candidate Vector Set 361 11.7.4 LLR for MIMO System Using a Limited Candidate Vector Set 364 Appendix 11.A Derivation of Equation (11.23) 370 12 Exploiting Channel State Information at the Transmitter Side 373 12.1 Channel Estimation on the Transmitter Side 373 12.1.1 Using Channel Reciprocity 374 12.1.2 CSI Feedback 374 12.2 Precoded OSTBC 375 12.3 Precoded Spatial-Multiplexing System 381 12.4 Antenna Selection Techniques 383 12.4.1 Optimum Antenna Selection Technique 384 12.4.2 Complexity-Reduced Antenna Selection 386 12.4.3 Antenna Selection for OSTBC 390 13 Multi-User MIMO 395 13.1 Mathematical Model for Multi-User MIMO System 396 13.2 Channel Capacity of Multi-User MIMO System 397 13.2.1 Capacity of MAC 398 13.2.2 Capacity of BC 399 13.3 Transmission Methods for Broadcast Channel 401 13.3.1 Channel Inversion 401 13.3.2 Block Diagonalization 404 13.3.3 Dirty Paper Coding (DPC) 408 13.3.4 Tomlinson-Harashima Precoding 412 References 419 Index 431

About the Author :
Yong Soo Cho is a Professor of Electronic Engineering at Chung-Ang University in Seoul, Korea. He has taught OFDM for 10 years and MIMO for 5. His research interests are in the areas of digital communication, digital signal processing, and FPGA Implementation. Cho has held positions at LG Electronics, the ETRI Mobile Communication Group, the WiBro Project Group, and was Chairman of the Wireless Access Working Group in Korea. He holds a BS from Chung-Ang University, an MS from Yonsei University, and a PhD from the University of Texas at Austin, all in electronic engineering. Jaekwon Kim is an Assistant Professor of Computer and Telecommunications Engineering at Yonsei University. Prior to that he worked at Samsung Advanced Institute of Technology with the 4G System Team. He holds a BS and MS from Chung-Ang University and a PhD from the University of Texas at Austin, all in electronic engineering. Won Y. Yang is a Professor of Electronic Engineering at Chung-Ang University. He has written two books on MATLAB in English, and two in Korean. Yang holds a BS and MS in Electrical Engineering from Seoul National University, an MS in Applied Math and a PhD in Electrical Engineering from the University of Southern California. Chung Gu Kang is a Professor of Radio Communication and Engineering at Korea University. Previous work experience inlcudes time in the US spent at the Aerospace Corporation and Rockwell International, where he worked on telecommunications systems development. He was also a Visiting Associate Professor at the UC San Diego. His research interests are focesed on the cross layer design issues for MIMO/multiple access schemes for mobile broadband wireless access systems and MAC/routing protocols for mobile ad hoc networks. Kang holds a BS from UC San Diego and an MS and PhD in Electrical Engineering and Computer Engineering from UC Irvine.


Best Sellers


Product Details
  • ISBN-13: 9780470825617
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: Wiley-IEEE Press
  • Height: 252 mm
  • No of Pages: 544
  • Returnable: N
  • Spine Width: 28 mm
  • Width: 173 mm
  • ISBN-10: 0470825618
  • Publisher Date: 19 Oct 2010
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Series Title: IEEE Press
  • Weight: 979 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

     4.3  |  12 Reviews 
out of (%) reviewers recommend this product
Top Reviews
Rating Snapshot
Select a row below to filter reviews.
5
4
3
2
1
Average Customer Ratings
     4.3  |  12 Reviews 
00 of 0 Reviews
Sort by :
Active Filters

00 of 0 Reviews
SEARCH RESULTS
1–2 of 2 Reviews
    BoxerLover2 - 5 Days ago
    A Thrilling But Totally Believable Murder Mystery

    Read this in one evening. I had planned to do other things with my day, but it was impossible to put down. Every time I tried, I was drawn back to it in less than 5 minutes. I sobbed my eyes out the entire last 100 pages. Highly recommend!

    BoxerLover2 - 5 Days ago
    A Thrilling But Totally Believable Murder Mystery

    Read this in one evening. I had planned to do other things with my day, but it was impossible to put down. Every time I tried, I was drawn back to it in less than 5 minutes. I sobbed my eyes out the entire last 100 pages. Highly recommend!


Sample text
Photo of
    Media Viewer

    Sample text
    Reviews
    Reader Type:
    BoxerLover2
    00 of 0 review

    Your review was submitted!
    MIMO-OFDM Wireless Communications with MATLAB: (IEEE Press)
    John Wiley & Sons Inc -
    MIMO-OFDM Wireless Communications with MATLAB: (IEEE Press)
    Writing guidlines
    We want to publish your review, so please:
    • keep your review on the product. Review's that defame author's character will be rejected.
    • Keep your review focused on the product.
    • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
    • Refrain from mentioning competitors or the specific price you paid for the product.
    • Do not include any personally identifiable information, such as full names.

    MIMO-OFDM Wireless Communications with MATLAB: (IEEE Press)

    Required fields are marked with *

    Review Title*
    Review
      Add Photo Add up to 6 photos
      Would you recommend this product to a friend?
      Tag this Book Read more
      Does your review contain spoilers?
      What type of reader best describes you?
      I agree to the terms & conditions
      You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

      CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

      These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


      By submitting any content to Bookswagon, you guarantee that:
      • You are the sole author and owner of the intellectual property rights in the content;
      • All "moral rights" that you may have in such content have been voluntarily waived by you;
      • All content that you post is accurate;
      • You are at least 13 years old;
      • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
      You further agree that you may not submit any content:
      • That is known by you to be false, inaccurate or misleading;
      • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
      • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
      • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
      • For which you were compensated or granted any consideration by any unapproved third party;
      • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
      • That contains any computer viruses, worms or other potentially damaging computer programs or files.
      You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


      For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


      All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

      Accept


      Inspired by your browsing history


      Your review has been submitted!

      You've already reviewed this product!