Functionalization of Semiconductor Surfaces
Home > Mathematics and Science Textbooks > Chemistry > Functionalization of Semiconductor Surfaces
Functionalization of Semiconductor Surfaces

Functionalization of Semiconductor Surfaces


     0     
5
4
3
2
1



International Edition


X
About the Book

This book presents both fundamental knowledge and latest achievements of this rapidly growing field in the last decade. It presents a complete and concise picture of the the state-of-the-art in the field, encompassing the most active international research groups in the world.  Led by contributions from leading global research groups, the book discusses the functionalization of semiconductor surface. Dry organic reactions in vacuum and wet organic chemistry in solution are two major categories of strategies for functionalization that will be described.  The growth of multilayer-molecular architectures on the formed organic monolayers will be documented. The immobilization of biomolecules such as DNA on organic layers chemically attached to semiconductor surfaces will be introduced. The patterning of complex structures of organic layers and metallic nanoclusters toward sensing techniques will be presented as well.

Table of Contents:
Preface xv Contributors xix 1. Introduction 1 Franklin (Feng) Tao, Yuan Zhu, and Steven L. Bernasek 1.1 Motivation for a Book on Functionalization of Semiconductor Surfaces 1 1.2 Surface Science as the Foundation of the Functionalization of Semiconductor Surfaces 2 1.2.1 Brief Description of the Development of Surface Science 2 1.2.2 Importance of Surface Science 3 1.2.3 Chemistry at the Interface of Two Phases 4 1.2.4 Surface Science at the Nanoscale 5 1.2.5 Surface Chemistry in the Functionalization of Semiconductor Surfaces 7 1.3 Organization of this Book 7 References 9 2. Surface Analytical Techniques 11 Ying Wei Cai and Steven L. Bernasek 2.1 Introduction 11 2.2 Surface Structure 12 2.2.1 Low-Energy Electron Diffraction 13 2.2.2 Ion Scattering Methods 14 2.2.3 Scanning Tunneling Microscopy and Atomic Force Microscopy 15 2.3 Surface Composition, Electronic Structure, and Vibrational Properties 16 2.3.1 Auger Electron Spectroscopy 16 2.3.2 Photoelectron Spectroscopy 17 2.3.3 Inverse Photoemission Spectroscopy 18 2.3.4 Vibrational Spectroscopy 18 2.3.4.1 Infrared Spectroscopy 19 2.3.4.2 High-Resolution Electron Energy Loss Spectroscopy 19 2.3.5 Synchrotron-Based Methods 20 2.3.5.1 Near-Edge X-Ray Absorption Fine Structure Spectroscopy 20 2.3.5.2 Energy Scanned PES 21 2.3.5.3 Glancing Incidence X-Ray Diffraction 21 2.4 Kinetic and Energetic Probes 21 2.4.1 Thermal Programmed Desorption 22 2.4.2 Molecular Beam Sources 22 2.5 Conclusions 23 References 23 3. Structures of Semiconductor Surfaces and Origins of Surface Reactivity with Organic Molecules 27 Yongquan Qu and Keli Han 3.1 Introduction 27 3.2 Geometry, Electronic Structure, and Reactivity of Clean Semiconductor Surfaces 28 3.2.1 Si(100)-(2×1), Ge(100)-(2×1), and Diamond(100)-(2×1) Surfaces 29 3.2.2 Si(111)-(7×7) Surface 33 3.3 Geometry and Electronic Structure of H-Terminated Semiconductor Surfaces 34 3.3.1 Preparation and Structure of H-Terminated Semiconductor Surfaces Under UHV 34 3.3.2 Preparation and Structure of H-Terminated Semiconductor Surfaces in Solution 35 3.3.3 Preparation and Structure of H-Terminated Semiconductor Surfaces Through Hydrogen Plasma Treatment 36 3.3.4 Reactivity of H-Terminated Semiconductor Surface Prepared Under UHV 36 3.3.5 Preparation and Structure of Partially H-Terminated Semiconductor Surfaces 36 3.3.6 Reactivity of Partially H-Terminated Semiconductor Surfaces Under Vacuum 38 3.4 Geometry and Electronic Structure of Halogen-Terminated Semiconductor Surfaces 39 3.4.1 Preparation of Halogen-Terminated Semiconductor Surfaces Under UHV 40 3.4.2 Preparation of Halogen-Terminated Semiconductor Surfaces from H-Terminated Semiconductor Surfaces 41 3.5 Reactivity of Hydrogen- or Halogen-Terminated Semiconductor Surfaces in Solution 41 3.5.1 Reactivity of Si and Ge Surfaces in Solution 41 3.5.2 Reactivity of Diamond Surfaces in Solution 43 3.6 Summary 45 Acknowledgments 46 References 46 4. Pericyclic Reactions of Organic Molecules at Semiconductor Surfaces 51 Keith T. Wong and Stacey F. Bent 4.1 Introduction 51 4.2 [2+2] Cycloaddition of Alkenes and Alkynes 53 4.2.1 Ethylene 53 4.2.2 Acetylene 57 4.2.3 Cis- and Trans-2-Butene 58 4.2.4 Cyclopentene 59 4.2.5 [2+2]-Like Cycloaddition on Si(111)-(7×7) 61 4.3 [4+2] Cycloaddition of Dienes 62 4.3.1 1,3-Butadiene and 2,3-Dimethyl-1,3-Butadiene 63 4.3.2 1,3-Cyclohexadiene 66 4.3.3 Cyclopentadiene 67 4.3.4 [4+2]-Like Cycloaddition on Si(111)-(7×7) 69 4.4 Cycloaddition of Unsaturated Organic Molecules Containing One or More Heteroatom 71 4.4.1 C=O-Containing Molecules 71 4.4.2 Nitriles 78 4.4.3 Isocyanates and Isothiocyanates 80 4.5 Summary 81 Acknowledgment 83 References 83 5. Chemical Binding of Five-Membered and Six-Membered Aromatic Molecules 89 Franklin (Feng) Tao and Steven L. Bernasek 5.1 Introduction 89 5.2 Five-Membered Aromatic Molecules Containing One Heteroatom 89 5.2.1 Thiophene, Furan, and Pyrrole on Si(111)-(7×7) 90 5.2.2 Thiophene, Furan, and Pyrrole on Si(100) and Ge(100) 92 5.3 Five-Membered Aromatic Molecules Containing Two Different Heteroatoms 95 5.4 Benzene 98 5.4.1 Different Binding Configurations on (100) Face of Silicon and Germanium 98 5.4.2 Di-Sigma Binding on Si(111)-(7×7) 99 5.5 Six-Membered Heteroatom Aromatic Molecules 100 5.6 Six-Membered Aromatic Molecules Containing Two Heteroatoms 101 5.7 Electronic and Structural Factors of the Semiconductor Surfaces for the Selection of Reaction Channels of Five-Membered and Six-Membered Aromatic Rings 102 References 103 6. Influence of Functional Groups in Substituted Aromatic Molecules on the Selection of Reaction Channel in Semiconductor Surface Functionalization 105 Andrew V. Teplyakov 6.1 Introduction 105 6.1.1 Scope of this Chapter 105 6.1.2 Structure of Most Common Elemental Semiconductor Surfaces: Comparison of Silicon with Germanium and Carbon 107 6.1.3 Brief Overview of the Types of Chemical Reactions Relevant for Aromatic Surface Modification of Clean Semiconductor Surfaces 111 6.2 Multifunctional Aromatic Reactions on Clean Silicon Surfaces 113 6.2.1 Homoaromatic Compounds Without Additional Functional Groups 113 6.2.2 Functionalized Aromatics 116 6.2.2.1 Dissociative Addition 116 6.2.2.2 Cycloaddition 120 6.2.3 Heteroaromatics: Aromaticity as a Driving Force in Surface Processes 130 6.2.4 Chemistry of Aromatic Compounds on Partially Hydrogen-Covered Silicon Surfaces 137 6.2.5 Delivery of Aromatic Groups onto a Fully Hydrogen Covered Silicon Surface 147 6.2.5.1 Hydrosilylation 147 6.2.5.2 Cyclocondensation 148 6.2.6 Delivery of Aromatic Compounds onto Protected Silicon Substrates 150 6.3 Summary 151 Acknowledgments 152 References 152 7. Covalent Binding of Polycyclic Aromatic Hydrocarbon Systems 163 Kian Soon Yong and Guo-Qin Xu 7.1 Introduction 163 7.2 PAHs on Si(100)-(2×1) 165 7.2.1 Naphthalene and Anthracene on Si(100)-(2×1) 165 7.2.2 Tetracene on Si(100)-(2×1) 167 7.2.3 Pentacene on Si(100)-(2×1) 169 7.2.4 Perylene on Si(100)-(2×1) 172 7.2.5 Coronene on Si(100)-(2×1) 173 7.2.6 Dibenzo[a, j ]coronene on Si(100)-(2×1) 174 7.2.7 Acenaphthylene on Si(100)-(2×1) 175 7.3 PAHs on Si(111)-(7×7) 176 7.3.1 Naphthalene on Si(111)-(7×7) 176 7.3.2 Tetracene on Si(111)-(7×7) 179 7.3.3 Pentacene on Si(111)-(7×7) 184 7.4 Summary 189 References 190 8. Dative Bonding of Organic Molecules 193 Young Hwan Min, Hangil Lee, Do Hwan Kim, and Sehun Kim 8.1 Introduction 193 8.1.1 What is Dative Bonding? 193 8.1.2 Periodic Trends in Dative Bond Strength 194 8.1.3 Examples of Dative Bonding: Ammonia and Phosphine on Si(100) and Ge(100) 197 8.2 Dative Bonding of Lewis Bases (Nucleophilic) 198 8.2.1 Aliphatic Amines 198 8.2.1.1 Primary, Secondary, and Tertiary Amines on Si(100) and Ge(100) 198 8.2.1.2 Cyclic Aliphatic Amines on Si(100) and Ge(100) 202 8.2.1.3 Ethylenediamine on Ge(100) 204 8.2.2 Aromatic Amines 206 8.2.2.1 Aniline on Si(100) and Ge(100) 207 8.2.2.2 Five-Membered Heteroaromatic Amines: Pyrrole on Si(100) and Ge(100) 209 8.2.2.3 Six-Membered Heteroaromatic Amines 211 8.2.3 O-Containing Molecules 218 8.2.3.1 Alcohols on Si(100) and Ge(100) 218 8.2.3.2 Ketones on Si(100) and Ge(100) 219 8.2.3.3 Carboxyl Acids on Si(100) and Ge(100) 220 8.2.4 S-Containing Molecules 223 8.2.4.1 Thiophene on Si(100) and Ge(100) 223 8.3 Dative Bonding of Lewis Acids (Electrophilic) 225 8.4 Summary 226 References 229 9. Ab Initio Molecular Dynamics Studies of Conjugated Dienes on Semiconductor Surfaces 233 Mark E. Tuckerman and Yanli Zhang 9.1 Introduction 233 9.2 Computational Methods 234 9.2.1 Density Functional Theory 235 9.2.2 Ab Initio Molecular Dynamics 237 9.2.3 Plane Wave Bases and Surface Boundary Conditions 239 9.2.4 Electron Localization Methods 244 9.3 Reactions on the Si(100)-(2×1) Surface 247 9.3.1 Attachment of 1,3-Butadiene to the Si(100)-(2×1) Surface 249 9.3.2 Attachment of 1,3-Cyclohexadiene to the Si(100)-(2×1) Surface 257 9.4 Reactions on the SiC(100)-(3×2) Surface 263 9.5 Reactions on the SiC(100)-(2×2) Surface 266 9.6 Calculation of STM Images: Failure of Perturbative Techniques 270 References 273 10. Formation of Organic Nanostructures on Semiconductor Surfaces 277 Md. Zakir Hossain and Maki Kawai 10.1 Introduction 277 10.2 Experimental 278 10.3 Results and Discussion 279 10.3.1 Individual 1D Nanostructures on Si(100)–H: STM Study 279 10.3.1.1 Styrene and Its Derivatives on Si(100)-(2×1)–H 279 10.3.1.2 Long-Chain Alkenes on Si(100)-(2×1)–H 284 10.3.1.3 Cross-Row Nanostructure 285 10.3.1.4 Aldehyde and Ketone: Acetophenone –A Unique Example 287 10.3.2 Interconnected Junctions of 1D Nanostructures 292 10.3.2.1 Perpendicular Junction 292 10.3.2.2 One-Dimensional Heterojunction 295 10.3.3 UPS of 1D Nanostructures on the Surface 296 10.4 Conclusions 298 Acknowledgment 299 References 299 11. Formation of Organic Monolayers Through Wet Chemistry 301 Damien Aureau and Yves J. Chabal 11.1 Introduction, Motivation, and Scope of Chapter 301 11.1.1 Background 301 11.1.2 Formation of H-Terminated Silicon Surfaces 303 11.1.3 Stability of H-Terminated Silicon Surfaces 304 11.1.4 Approach 305 11.1.5 Outline 305 11.2 Techniques Characterizing Wet Chemically Functionalized Surfaces 307 11.2.1 X-Ray Photoelectron Spectroscopy 307 11.2.2 Infrared Absorption Spectroscopy 308 11.2.3 Secondary Ion Mass Spectrometry 310 11.2.4 Surface-Enhanced Raman Spectroscopy 311 11.2.5 Spectroscopic Ellipsometry 311 11.2.6 X-Ray Reflectivity 312 11.2.7 Contact Angle, Wettability 312 11.2.8 Photoluminescence 312 11.2.9 Electrical Measurements 313 11.2.10 Imaging Techniques 313 11.2.11 Electron and Atom Diffraction Methods 313 11.3 Hydrosilylation of H-Terminated Surfaces 314 11.3.1 Catalyst-Aided Reactions 315 11.3.2 Photochemically Induced Reactions 318 11.3.3 Thermally Activated Reactions 320 11.4 Electrochemistry of H-Terminated Surfaces 322 11.4.1 Cathodic Grafting 322 11.4.2 Anodic Grafting 323 11.5 Use of Halogen-Terminated Surfaces 324 11.6 Alcohol Reaction with H-Terminated Si Surfaces 327 11.7 Outlook 331 Acknowledgments 331 References 332 12. Chemical Stability of Organic Monolayers Formed in Solution 339 Leslie E. O’Leary, Erik Johansson, and Nathan S. Lewis 12.1 Reactivity of H-Terminated Silicon Surfaces 339 12.1.1 Background 339 12.1.1.1 Synthesis of H-Terminated Si Surfaces 339 12.1.2 Reactivity of H-Si 342 12.1.2.1 Aqueous Acidic Media 342 12.1.2.2 Aqueous Basic Media 343 12.1.2.3 Oxygen-Containing Environments 344 12.1.2.4 Alcohols 344 12.1.2.5 Metals 345 12.2 Reactivity of Halogen-Terminated Silicon Surfaces 347 12.2.1 Background 347 12.2.1.1 Synthesis of Cl-Terminated Surfaces 348 12.2.1.2 Synthesis of Br-Terminated Surfaces 350 12.2.1.3 Synthesis of I-Terminated Surfaces 350 12.2.2 Reactivity of Halogenated Silicon Surfaces 351 12.2.2.1 Halogen Etching 351 12.2.2.2 Aqueous Media 352 12.2.2.3 Oxygen-Containing Environments 353 12.2.2.4 Alcohols 355 12.2.2.5 Other Solvents 356 12.2.2.6 Metals 359 12.3 Carbon-Terminated Silicon Surfaces 360 12.3.1 Introduction 360 12.3.2 Structural and Electronic Characterization of Carbon-Terminated Silicon 361 12.3.2.1 Structural Characterization of CH3-Si(111) 362 12.3.2.2 Structural Characterization of Other Si-C Functionalized Surfaces 362 12.3.2.3 Electronic Characterization of Alkylated Silicon 364 12.3.3 Reactivity of C-Terminated Silicon Surfaces 366 12.3.3.1 Thermal Stability of Alkylated Silicon 367 12.3.3.2 Stability in Aqueous Conditions 367 12.3.3.3 Stability of Si-C Terminated Surfaces in Air 371 12.3.3.4 Stability of Si-C Terminated Surfaces in Alcohols 372 12.3.3.5 Stability in Other Common Solvents 372 12.3.3.6 Silicon–Organic Monolayer–Metal Systems 374 12.4 Applications and Strategies for Functionalized Silicon Surfaces 376 12.4.1 Tethered Redox Centers 378 12.4.2 Conductive Polymer Coatings 379 12.4.3 Metal Films 382 12.4.3.1 Stability Enhancement 382 12.4.3.2 Deposition on Organic Monolayers 382 12.4.4 Semiconducting and Nonmetallic Coatings 389 12.4.4.1 Stability Enhancement 389 12.4.4.2 Deposition on Si by ALD 389 12.5 Conclusions 391 References 392 13. Immobilization of Biomolecules at Semiconductor Interfaces 401 Robert J. Hamers 13.1 Introduction 401 13.2 Molecular and Biomolecular Interfaces to Semiconductors 402 13.2.1 Functionalization Strategies 402 13.2.2 Silane Derivatives 403 13.2.3 Phosphonic Acids 406 13.2.4 Alkene Grafting 406 13.3 DNA-Modified Semiconductor Surfaces 407 13.3.1 DNA-Modified Silicon 407 13.3.2 DNA-Modified Diamond 411 13.3.3 DNA on Metal Oxides 412 13.4 Proteins at Surfaces 415 13.4.1 Protein-Resistant Surfaces 415 13.4.2 Protein-Selective Surfaces 417 13.5 Covalent Biomolecular Interfaces for Direct Electrical Biosensing 418 13.5.1 Detection Methods on Planar Surfaces 418 13.5.2 Sensitivity Considerations 420 13.6 Nanowire Sensors 422 13.7 Summary 422 Acknowledgments 423 References 423 14. Perspective and Challenge 429 Franklin (Feng) Tao and Steven L. Bernasek Index 431

About the Author :
FRANKLIN (FENG) TAO, PHD, is Assistant Professor of Chemistry at the University of Notre Dame. His research group is actively involved in investigations of surface science, heterogeneous catalysis for efficient energy conversion, nanomaterials, and in situ studies of catalysts. Dr. Tao is the author of about 70 research articles and the recipient of the International Union of Pure and Applied Chemistry Prize for Young Chemists. STEVEN L. BERNASEK, PHD, is Professor of Chemistry at Princeton University. His research focuses on chirality in self-assembled monolayers, surface functionalization and modification, organometallic surface chemistry, and dynamics of gas-surface interactions. Dr. Bernasek is the author of more than 200 research articles. He is also the recipient of several awards, including the ACS Arthur W. Adamson Award for Distinguished Service in the Advancement of Surface Chemistry.


Best Sellers


Product Details
  • ISBN-13: 9780470562949
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: John Wiley & Sons Inc
  • Height: 241 mm
  • No of Pages: 454
  • Returnable: N
  • Weight: 762 gr
  • ISBN-10: 0470562943
  • Publisher Date: 19 Apr 2012
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Spine Width: 28 mm
  • Width: 168 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Functionalization of Semiconductor Surfaces
John Wiley & Sons Inc -
Functionalization of Semiconductor Surfaces
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Functionalization of Semiconductor Surfaces

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!