Inductance – Loop and Partial
Home > Science, Technology & Agriculture > Electronics and communications engineering > Communications engineering / telecommunications > Inductance – Loop and Partial
Inductance – Loop and Partial

Inductance – Loop and Partial


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This is an unprecedented text, thoroughly illuminating "loop inductance" as well as the increasingly important "partial inductance", which are integral systems of understanding for the proper operation of high-speed digital systems. It fills a hole in the market and addresses industry-wide failure to adequately understand and calculate inductance, giving a badly needed refresher on magnetic fields. Written by a world-renowned leader and respected teacher in the field of Electromagnetics, this is a key text for graduate level engineering students, working engineers, and professionals engaged in electrical system scientific or research work.

Table of Contents:
Preface. 1 Introduction. 1.1 Historical Background. 1.2 Fundamental Concepts of Lumped Circuits. 1.3 Outline of the Book. 1.4 "Loop" Inductance vs. "Partial" Inductance. 2 Magnetic Fields of DC Currents (Steady Flow of Charge). 2.1 Magnetic Field Vectors and Properties of Materials. 2.2 Gauss's Law for the Magnetic Field and the Surface Integral. 2.3 The Biot-Savart Law. 2.4 Ampere's Law and the Line Integral. 2.5 Vector Magnetic Potential. 2.5.1 Leibnitz's Rule: Differentiate Before You Integrate. 2.6 Determining the Inductance of a Current Loop:. A Preliminary Discussion. 2.7 Energy Stored in the Magnetic Field. 2.8 The Method of Images. 2.9 Steady (DC) Currents Must Form Closed Loops. 3 Fields of Time-Varying Currents (Accelerated Charge). 3.1 Faraday's Fundamental Law of Induction. 3.2 Ampere's Law and Displacement Current. 3.3 Waves, Wavelength, Time Delay, and Electrical Dimensions. 3.4 How Can Results Derived Using Static (DC) Voltages and Currents be Used in Problems Where the Voltages and Currents are Varying with Time?. 3.5 Vector Magnetic Potential for Time-Varying Currents. 3.6 Conservation of Energy and Poynting's Theorem. 3.7 Inductance of a Conducting Loop. 4 The Concept of "Loop" Inductance. 4.1 Self Inductance of a Current Loop from Faraday's Law of Induction. 4.1.1 Rectangular Loop. 4.1.2 Circular Loop. 4.1.3 Coaxial Cable. 4.2 The Concept of Flux Linkages for Multiturn Loops. 4.2.1 Solenoid. 4.2.2 Toroid. 4.3 Loop Inductance Using the Vector Magnetic Potential. 4.3.1 Rectangular Loop. 4.3.2 Circular Loop. 4.4 Neumann Integral for Self and Mutual Inductances Between Current Loops. 4.4.1 Mutual Inductance Between Two Circular Loops. 4.4.2 Self Inductance of the Rectangular Loop. 4.4.3 Self Inductance of the Circular Loop. 4.5 Internal Inductance vs. External Inductance. 4.6 Use of Filamentary Currents and Current Redistribution Due to the Proximity Effect. 4.6.1 Two-Wire Transmission Line. 4.6.2 One Wire Above a Ground Plane. 4.7 Energy Storage Method for Computing Loop Inductance. 4.7.1 Internal Inductance of a Wire. 4.7.2 Two-Wire Transmission Line. 4.7.3 Coaxial Cable. 4.8 Loop Inductance Matrix for Coupled Current Loops. 4.8.1 Dot Convention. 4.8.2 Multiconductor Transmission Lines. 4.9 Loop Inductances of Printed Circuit Board Lands. 4.10 Summary of Methods for Computing Loop Inductance. 4.10.1 Mutual Inductance Between Two Rectangular Loops. 5 The Concept of "Partial" Inductance. 5.1 General Meaning of Partial Inductance. 5.2 Physical Meaning of Partial Inductance. 5.3 Self Partial Inductance of Wires. 5.4 Mutual Partial Inductance Between Parallel Wires. 5.5 Mutual Partial Inductance Between Parallel Wires that are Offset. 5.6 Mutual Partial Inductance Between Wires at an Angle to Each Other. 5.7 Numerical Values of Partial Inductances and Significance of Internal Inductance. 5.8 Constructing Lumped Equivalent Circuits with Partial Inductances. 6 Partial Inductances of Conductors of Rectangular Cross Section. 6.1 Formulation for the Computation of the Partial Inductances of PCB Lands. 6.2 Self Partial Inductance of PCB Lands. 6.3 Mutual Partial Inductance Between PCB Lands. 6.4 Concept of Geometric Mean Distance. 6.4.1 Geometrical Mean Distance Between a Shape and Itself and the Self Partial Inductance of a Shape. 6.4.2 Geometrical Mean Distance and Mutual Partial Inductance Between Two Shapes. 6.5 Computing the High-Frequency Partial Inductances of Lands and Numerical Methods. 7 "Loop" Inductance vs. "Partial" Inductance. 7.1 Loop Inductance vs. Partial Inductance: Intentional Inductors vs. Nonintentional Inductors. 7.2 To Compute "Loop" Inductance, the "Return Path" for the Current Must be Determined. 7.3 Generally, There is no Unique Return Path for all Frequencies, Thereby Complicating the Calculation of a "Loop" Inductance. 7.4 Computing the "Ground Bounce" and "Power Rail Collapse" of a Digital Power Distribution System Using "Loop" Inductances. 7.5 Where Should the "Loop" Inductance of the Closed Current Path be Placed When Developing a Lumped-Circuit Model of a Signal or Power Delivery Path?. 7.6 How Can a Lumped-Circuit Model of a Complicated System of a Large Number of Tightly Coupled Current Loops be Constructed Using "Loop" Inductance?. 7.7 Modeling Vias on PCBs. 7.8 Modeling Pins in Connectors. 7.9 Net Self Inductance of Wires in Parallel and in Series. 7.10 Computation of Loop Inductances for Various Loop Shapes. 7.11 Final Example: Use of Loop and Partial Inductance to Solve a Problem. Appendix A: Fundamental Concepts of Vectors. A.1 Vectors and Coordinate Systems. A.2 Line Integral. A.3 Surface Integral. A.4 Divergence. A.4.1 Divergence Theorem. A.5 Curl. A.5.1 Stokes's Theorem. A.6 Gradient of a Scalar Field. A.7 Important Vector Identities. A.8 Cylindrical Coordinate System. A.9 Spherical Coordinate System. Table of Identities, Derivatives, and Integrals Used in this Book. References and Further Readings. Index .

About the Author :
Clayton R. Paul received his PhD in electrical engineering from Purdue University. He is the Sam Nunn Eminent Professor of Electrical and Computer Engineering at Mercer University in Macon, Georgia. Dr. Paul is also Emeritus (retired with distinction after 27 years on the faculty) Professor of Electrical Engineering at the University of Kentucky. He is the author of 15 textbooks on electrical engineering subjects and has published over 200 technical papers, the majority of which are in his primary research area of the electromagnetic compatibility (EMC) of electronic systems. Dr. Paul is a Life Fellow member of the Institute of Electrical and Electronics Engineers (IEEE) and an Honorary Life Member of the IEEE EMC Society. He received the prestigious 2005 IEEE Electromagnetics Award and the 2007 IEEE Undergraduate Teaching Award.


Best Sellers


Product Details
  • ISBN-13: 9780470561232
  • Publisher: John Wiley and Sons Ltd
  • Publisher Imprint: Wiley-Blackwell
  • Language: English
  • ISBN-10: 0470561238
  • Publisher Date: 14 Dec 2009
  • Binding: Other digital
  • No of Pages: 400


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Inductance – Loop and Partial
John Wiley and Sons Ltd -
Inductance – Loop and Partial
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Inductance – Loop and Partial

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!