Buy RF and Microwave Transmitter Design by Andrei Grebennikov
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Electronics and communications engineering > Communications engineering / telecommunications > Radio technology > RF and Microwave Transmitter Design: (Wiley Series in Microwave and Optical Engineering)
RF and Microwave Transmitter Design: (Wiley Series in Microwave and Optical Engineering)

RF and Microwave Transmitter Design: (Wiley Series in Microwave and Optical Engineering)


     0     
5
4
3
2
1



International Edition


X
About the Book

RF and Microwave Transmitter Design is unique in its coverage of both historical transmitter design and cutting edge technologies. This text explores the results of well-known and new theoretical analyses, while informing readers of modern radio transmitters' pracitcal designs and their components. Jam-packed with information, this book broadcasts and streamlines the author's considerable experience in RF and microwave design and development.

Table of Contents:
Preface xiii Introduction 1 References 6 1 Passive Elements and Circuit Theory 9 1.1 Immittance Two-Port Network Parameters 9 1.2 Scattering Parameters 13 1.3 Interconnections of Two-Port Networks 17 1.4 Practical Two-Port Networks 20 1.4.1 Single-Element Networks 20 1.4.2 π- and T -Type Networks 21 1.5 Three-Port Network with Common Terminal 24 1.6 Lumped Elements 26 1.6.1 Inductors 26 1.6.2 Capacitors 29 1.7 Transmission Line 31 1.8 Types of Transmission Lines 35 1.8.1 Coaxial Line 35 1.8.2 Stripline 36 1.8.3 Microstrip Line 39 1.8.4 Slotline 41 1.8.5 Coplanar Waveguide 42 1.9 Noise 44 1.9.1 Noise Sources 44 1.9.2 Noise Figure 46 1.9.3 Flicker Noise 53 References 53 2 Active Devices and Modeling 57 2.1 Diodes 57 2.1.1 Operation Principle 57 2.1.2 Schottky Diodes 59 2.1.3 p–i–n Diodes 61 2.1.4 Zener Diodes 62 2.2 Varactors 63 2.2.1 Varactor Modeling 63 2.2.2 MOS Varactor 65 2.3 MOSFETs 70 2.3.1 Small-Signal Equivalent Circuit 70 2.3.2 Nonlinear I–V Models 73 2.3.3 Nonlinear C–V Models 75 2.3.4 Charge Conservation 78 2.3.5 Gate–Source Resistance 79 2.3.6 Temperature Dependence 79 2.3.7 Noise Model 81 2.4 MESFETs and HEMTs 83 2.4.1 Small-Signal Equivalent Circuit 83 2.4.2 Determination of Equivalent Circuit Elements 85 2.4.3 Curtice Quadratic Nonlinear Model 88 2.4.4 Parker–Skellern Nonlinear Model 89 2.4.5 Chalmers (Angelov) Nonlinear Model 91 2.4.6 IAF (Berroth) Nonlinear Model 93 2.4.7 Noise Model 94 2.5 BJTs and HBTs 97 2.5.1 Small-Signal Equivalent Circuit 97 2.5.2 Determination of Equivalent Circuit Elements 98 2.5.3 Equivalence of Intrinsic π- and T -Type Topologies 100 2.5.4 Nonlinear Bipolar Device Modeling 102 2.5.5 Noise Model 105 References 107 3 Impedance Matching 113 3.1 Main Principles 113 3.2 Smith Chart 116 3.3 Matching with Lumped Elements 120 3.3.1 Analytic Design Technique 120 3.3.2 Bipolar UHF Power Amplifier 131 3.3.3 MOSFET VHF High-Power Amplifier 135 3.4 Matching with Transmission Lines 138 3.4.1 Analytic Design Technique 138 3.4.2 Equivalence Between Circuits with Lumped and Distributed Parameters 144 3.4.3 Narrowband Microwave Power Amplifier 147 3.4.4 Broadband UHF High-Power Amplifier 149 3.5 Matching Networks with Mixed Lumped and Distributed Elements 151 References 153 4 Power Transformers, Combiners, and Couplers 155 4.1 Basic Properties 155 4.1.1 Three-Port Networks 155 4.1.2 Four-Port Networks 156 4.2 Transmission-Line Transformers and Combiners 158 4.3 Baluns 168 4.4 Wilkinson Power Dividers/Combiners 174 4.5 Microwave Hybrids 182 4.6 Coupled-Line Directional Couplers 192 References 197 5 Filters 201 5.1 Types of Filters 201 5.2 Filter Design Using Image Parameter Method 205 5.2.1 Constant-k Filter Sections 205 5.2.2 m-Derived Filter Sections 207 5.3 Filter Design Using Insertion Loss Method 210 5.3.1 Maximally Flat Low-Pass Filter 210 5.3.2 Equal-Ripple Low-Pass Filter 213 5.3.3 Elliptic Function Low-Pass Filter 216 5.3.4 Maximally Flat Group-Delay Low-Pass Filter 219 5.4 Bandpass and Bandstop Transformation 222 5.5 Transmission-Line Low-Pass Filter Implementation 225 5.5.1 Richards’s Transformation 225 5.5.2 Kuroda Identities 226 5.5.3 Design Example 228 5.6 Coupled-Line Filters 228 5.6.1 Impedance and Admittance Inverters 228 5.6.2 Coupled-Line Section 231 5.6.3 Parallel-Coupled Bandpass Filters Using Half-Wavelength Resonators 234 5.6.4 Interdigital, Combline, and Hairpin Bandpass Filters 236 5.6.5 Microstrip Filters with Unequal Phase Velocities 239 5.6.6 Bandpass and Bandstop Filters Using Quarter-Wavelength Resonators 241 5.7 SAW and BAW Filters 243 References 250 6 Modulation and Modulators 255 6.1 Amplitude Modulation 255 6.1.1 Basic Principle 255 6.1.2 Amplitude Modulators 259 6.2 Single-Sideband Modulation 262 6.2.1 Double-Sideband Modulation 262 6.2.2 Single-Sideband Generation 265 6.2.3 Single-Sideband Modulator 266 6.3 Frequency Modulation 267 6.3.1 Basic Principle 268 6.3.2 Frequency Modulators 273 6.4 Phase Modulation 278 6.5 Digital Modulation 283 6.5.1 Amplitude Shift Keying 284 6.5.2 Frequency Shift Keying 287 6.5.3 Phase Shift Keying 289 6.5.4 Minimum Shift Keying 296 6.5.5 Quadrature Amplitude Modulation 299 6.5.6 Pulse Code Modulation 300 6.6 Class-S Modulator 302 6.7 Multiple Access Techniques 304 6.7.1 Time and Frequency Division Multiplexing 304 6.7.2 Frequency Division Multiple Access 305 6.7.3 Time Division Multiple Access 305 6.7.4 Code Division Multiple Access 306 References 308 7 Mixers and Multipliers 311 7.1 Basic Theory 311 7.2 Single-Diode Mixers 313 7.3 Balanced Diode Mixers 318 7.3.1 Single-Balanced Mixers 318 7.3.2 Double-Balanced Mixers 321 7.4 Transistor Mixers 326 7.5 Dual-Gate FET Mixer 329 7.6 Balanced Transistor Mixers 331 7.6.1 Single-Balanced Mixers 331 7.6.2 Double-Balanced Mixers 334 7.7 Frequency Multipliers 338 References 344 8 Oscillators 347 8.1 Oscillator Operation Principles 347 8.1.1 Steady-State Operation Mode 347 8.1.2 Start-Up Conditions 349 8.2 Oscillator Configurations and Historical Aspect 353 8.3 Self-Bias Condition 358 8.4 Parallel Feedback Oscillator 362 8.5 Series Feedback Oscillator 365 8.6 Push–Push Oscillators 368 8.7 Stability of Self-Oscillations 372 8.8 Optimum Design Techniques 376 8.8.1 Empirical Approach 376 8.8.2 Analytic Approach 379 8.9 Noise in Oscillators 385 8.9.1 Parallel Feedback Oscillator 386 8.9.2 Negative Resistance Oscillator 392 8.9.3 Colpitts Oscillator 394 8.9.4 Impulse Response Model 397 8.10 Voltage-Controlled Oscillators 407 8.11 Crystal Oscillators 417 8.12 Dielectric Resonator Oscillators 423 References 428 9 Phase-Locked Loops 433 9.1 Basic Loop Structure 433 9.2 Analog Phase-Locked Loops 435 9.3 Charge-Pump Phase-Locked Loops 439 9.4 Digital Phase-Locked Loops 441 9.5 Loop Components 444 9.5.1 Phase Detector 444 9.5.2 Loop Filter 449 9.5.3 Frequency Divider 454 9.5.4 Voltage-Controlled Oscillator 457 9.6 Loop Parameters 461 9.6.1 Lock Range 461 9.6.2 Stability 462 9.6.3 Transient Response 463 9.6.4 Noise 465 9.7 Phase Modulation Using Phase-Locked Loops 466 9.8 Frequency Synthesizers 469 9.8.1 Direct Analog Synthesizers 469 9.8.2 Integer-N Synthesizers Using PLL 469 9.8.3 Fractional-N Synthesizers Using PLL 471 9.8.4 Direct Digital Synthesizers 473 References 474 10 Power Amplifier Design Fundamentals 477 10.1 Power Gain and Stability 477 10.2 Basic Classes of Operation: A, AB, B, and C 487 10.3 Linearity 496 10.4 Nonlinear Effect of Collector Capacitance 503 10.5 DC Biasing 506 10.6 Push–Pull Power Amplifiers 515 10.7 Broadband Power Amplifiers 522 10.8 Distributed Power Amplifiers 537 10.9 Harmonic Tuning Using Load–Pull Techniques 543 10.10 Thermal Characteristics 549 References 552 11 High-Efficiency Power Amplifiers 557 11.1 Class D 557 11.1.1 Voltage-Switching Configurations 557 11.1.2 Current-Switching Configurations 561 11.1.3 Drive and Transition Time 564 11.2 Class F 567 11.2.1 Idealized Class F Mode 569 11.2.2 Class F with Quarterwave Transmission Line 572 11.2.3 Effect of Saturation Resistance 575 11.2.4 Load Networks with Lumped and Distributed Parameters 577 11.3 Inverse Class F 581 11.3.1 Idealized Inverse Class F Mode 583 11.3.2 Inverse Class F with Quarterwave Transmission Line 585 11.3.3 Load Networks with Lumped and Distributed Parameters 586 11.4 Class E with Shunt Capacitance 589 11.4.1 Optimum Load Network Parameters 590 11.4.2 Saturation Resistance and Switching Time 595 11.4.3 Load Network with Transmission Lines 599 11.5 Class E with Finite dc-Feed Inductance 601 11.5.1 General Analysis and Optimum Circuit Parameters 601 11.5.2 Parallel-Circuit Class E 605 11.5.3 Broadband Class E 610 11.5.4 Power Gain 613 11.6 Class E with Quarterwave Transmission Line 615 11.6.1 General Analysis and Optimum Circuit Parameters 615 11.6.2 Load Network with Zero Series Reactance 622 11.6.3 Matching Circuits with Lumped and Distributed Parameters 625 11.7 Class FE 628 11.8 CAD Design Example: 1.75 GHz HBT Class E MMIC Power Amplifier 638 References 653 12 Linearization and Efficiency Enhancement Techniques 657 12.1 Feedforward Amplifier Architecture 657 12.2 Cross Cancellation Technique 663 12.3 Reflect Forward Linearization Amplifier 665 12.4 Predistortion Linearization 666 12.5 Feedback Linearization 672 12.6 Doherty Power Amplifier Architectures 678 12.7 Outphasing Power Amplifiers 685 12.8 Envelope Tracking 691 12.9 Switched Multipath Power Amplifiers 695 12.10 Kahn EER Technique and Digital Power Amplification 702 12.10.1 Envelope Elimination and Restoration 702 12.10.2 Pulse-Width Carrier Modulation 704 12.10.3 Class S Amplifier 706 12.10.4 Digital RF Amplification 706 References 709 13 Control Circuits 717 13.1 Power Detector and VSWR Protection 717 13.2 Switches 722 13.3 Phase Shifters 728 13.3.1 Diode Phase Shifters 729 13.3.2 Schiffman 90◦ Phase Shifter 736 13.3.3 MESFET Phase Shifters 739 13.4 Attenuators 741 13.5 Variable Gain Amplifiers 746 13.6 Limiters 750 References 753 14 Transmitter Architectures 759 14.1 Amplitude-Modulated Transmitters 759 14.1.1 Collector Modulation 760 14.1.2 Base Modulation 762 14.1.3 Low-Level Modulation 764 14.1.4 Amplitude Keying 765 14.2 Single-Sideband Transmitters 766 14.3 Frequency-Modulated Transmitters 768 14.4 Television Transmitters 772 14.5 Wireless Communication Transmitters 776 14.6 Radar Transmitters 782 14.6.1 Phased-Array Radars 783 14.6.2 Automotive Radars 786 14.6.3 Electronic Warfare 791 14.7 Satellite Transmitters 794 14.8 Ultra-Wideband Communication Transmitters 797 References 802 Index 809

About the Author :
Andrei Grebennikov is a Member of the Technical Staff at Bell Laboratories, Alcatel-Lucent, in Ireland. His responsibilities include the design and development of advanced highly efficient and linear transmitter architectures for base station cellular applications. He has taught at the University of Linz in Austria, the Institute of Microelectronics in Singapore, and the Moscow Technical University of Communications and Informatics. He has written over eighty scientific papers, has written four books, and is a Senior Member of IEEE.


Best Sellers


Product Details
  • ISBN-13: 9780470520994
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: John Wiley & Sons Inc
  • Height: 262 mm
  • No of Pages: 848
  • Returnable: N
  • Spine Width: 49 mm
  • Width: 185 mm
  • ISBN-10: 047052099X
  • Publisher Date: 24 Jun 2011
  • Binding: Hardback
  • Language: English
  • Returnable: N
  • Series Title: Wiley Series in Microwave and Optical Engineering
  • Weight: 1790 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
RF and Microwave Transmitter Design: (Wiley Series in Microwave and Optical Engineering)
John Wiley & Sons Inc -
RF and Microwave Transmitter Design: (Wiley Series in Microwave and Optical Engineering)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

RF and Microwave Transmitter Design: (Wiley Series in Microwave and Optical Engineering)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!