Buy A First Course in Finite Elements at Bookstore UAE
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Mathematics > Calculus and mathematical analysis > Differential calculus and equations > A First Course in Finite Elements
A First Course in Finite Elements

A First Course in Finite Elements


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Written by the global leaders in finite elements, this book is the ideal practical introductory course for engineering and science students as well as those needing a first course or refresher on the subject.

Table of Contents:

Preface xi

1 Introduction 1

1.1 Background 1

1.2 Applications of Finite elements 7

References 9

2 Direct Approach for Discrete Systems 11

2.1 Describing the Behavior of a Single Bar Element 11

2.2 Equations for a System 15

2.2.1 Equations for Assembly 18

2.2.2 Boundary Conditions and System Solution 20

2.3 Applications to Other Linear Systems 24

2.4 Two-Dimensional Truss Systems 27

2.5 Transformation Law 30

2.6 Three-Dimensional Truss Systems 35

References 36

Problems 37

3 Strong andWeak Forms for One-Dimensional Problems 41

3.1 The Strong Form in One-Dimensional Problems 42

3.1.1 The Strong Form for an Axially Loaded Elastic Bar 42

3.1.2 The Strong Form for Heat Conduction in One Dimension 44

3.1.3 Diffusion in One Dimension 46

3.2 TheWeak Form in One Dimension 47

3.3 Continuity 50

3.4 The Equivalence Between theWeak and Strong Forms 51

3.5 One-Dimensional Stress Analysis with Arbitrary Boundary Conditions 58

3.5.1 Strong Form for One-Dimensional Stress Analysis 58

3.5.2 Weak Form for One-Dimensional Stress Analysis 59

3.6 One-Dimensional Heat Conduction with Arbitrary Boundary Conditions 60

3.6.1 Strong Form for Heat Conduction in One Dimension with Arbitrary Boundary Conditions 60

3.6.2 Weak Form for Heat Conduction in One Dimension with Arbitrary Boundary Conditions 61

3.7 Two-Point Boundary Value Problem with Generalized Boundary Conditions 62

3.7.1 Strong Form for Two-Point Boundary Value Problems with Generalized Boundary Conditions 62

3.7.2 Weak Form for Two-Point Boundary Value Problems with Generalized Boundary Conditions 63

3.8 Advection–Diffusion 64

3.8.1 Strong Form of Advection–Diffusion Equation 65

3.8.2 Weak Form of Advection–Diffusion Equation 66

3.9 Minimum Potential Energy 67

3.10 Integrability 71

References 72

Problems 72

4 Approximation of Trial Solutions,Weight Functions and Gauss Quadrature for One-Dimensional Problems 77

4.1 Two-Node Linear Element 79

4.2 Quadratic One-Dimensional Element 81

4.3 Direct Construction of Shape Functions in One Dimension 82

4.4 Approximation of theWeight Functions 84

4.5 Global Approximation and Continuity 84

4.6 Gauss Quadrature 85

Reference 90

Problems 90

5 Finite Element Formulation for One-Dimensional Problems 93

5.1 Development of Discrete Equation: Simple Case 93

5.2 Element Matrices for Two-Node Element 97

5.3 Application to Heat Conduction and Diffusion Problems 99

5.4 Development of Discrete Equations for Arbitrary Boundary Conditions 105

5.5 Two-Point Boundary Value Problem with Generalized Boundary Conditions 111

5.6 Convergence of the FEM 113

5.6.1 Convergence by Numerical Experiments 115

5.6.2 Convergence by Analysis 118

5.7 FEM for Advection–Diffusion Equation 120

References 122

Problems 123

6 Strong andWeak Forms for Multidimensional Scalar Field Problems 131

6.1 Divergence Theorem and Green’s Formula 133

6.2 Strong Form 139

6.3 Weak Form 142

6.4 The Equivalence BetweenWeak and Strong Forms 144

6.5 Generalization to Three-Dimensional Problems 145

6.6 Strong andWeak Forms of Scalar Steady-State Advection–Diffusion in Two Dimensions 146

References 148

Problems 148

7 Approximations of Trial Solutions,Weight Functions and Gauss Quadrature for Multidimensional Problems 151

7.1 Completeness and Continuity 152

7.2 Three-Node Triangular Element 154

7.2.1 Global Approximation and Continuity 157

7.2.2 Higher Order Triangular Elements 159

7.2.3 Derivatives of Shape Functions for the Three-Node Triangular Element 160

7.3 Four-Node Rectangular Elements 161

7.4 Four-Node Quadrilateral Element 164

7.4.1 Continuity of Isoparametric Elements 166

7.4.2 Derivatives of Isoparametric Shape Functions 166

7.5 Higher Order Quadrilateral Elements 168

7.6 Triangular Coordinates 172

7.6.1 Linear Triangular Element 172

7.6.2 Isoparametric Triangular Elements 174

7.6.3 Cubic Element 175

7.6.4 Triangular Elements by Collapsing Quadrilateral Elements 176

7.7 Completeness of Isoparametric Elements 177

7.8 Gauss Quadrature in Two Dimensions 178

7.8.1 Integration Over Quadrilateral Elements 179

7.8.2 Integration Over Triangular Elements 180

7.9 Three-Dimensional Elements 181

7.9.1 Hexahedral Elements 181

7.9.2 Tetrahedral Elements 183

References 185

Problems 186

8 Finite Element Formulation for Multidimensional Scalar Field Problems 189

8.1 Finite Element Formulation for Two-Dimensional Heat Conduction Problems 189

8.2 Verification and Validation 201

8.3 Advection–Diffusion Equation 207

References 209

Problems 209

9 Finite Element Formulation for Vector Field Problems – Linear Elasticity 215

9.1 Linear Elasticity 215

9.1.1 Kinematics 217

9.1.2 Stress and Traction 219

9.1.3 Equilibrium 220

9.1.4 Constitutive Equation 222

9.2 Strong andWeak Forms 223

9.3 Finite Element Discretization 225

9.4 Three-Node Triangular Element 228

9.4.1 Element Body Force Matrix 229

9.4.2 Boundary Force Matrix 230

9.5 Generalization of Boundary Conditions 231

9.6 Discussion 239

9.7 Linear Elasticity Equations in Three Dimensions 240

Problems 241

10 Finite Element Formulation for Beams 249

10.1 Governing Equations of the Beam 249

10.1.1 Kinematics of Beam 249

10.1.2 Stress–Strain Law 252

10.1.3 Equilibrium 253

10.1.4 Boundary Conditions 254

10.2 Strong Form toWeak Form 255

10.2.1 Weak Form to Strong Form 257

10.3 Finite Element Discretization 258

10.3.1 Trial Solution andWeight Function Approximations 258

10.3.2 Discrete Equations 260

10.4 Theorem of Minimum Potential Energy 261

10.5 Remarks on Shell Elements 265

Reference 269

Problems 269

11 Commercial Finite Element Program ABAQUS Tutorials 275

11.1 Introduction 275

11.1.1 Steady-State Heat Flow Example 275

11.2 Preliminaries 275

11.3 Creating a Part 276

11.4 Creating a Material Definition 278

11.5 Defining and Assigning Section Properties 279

11.6 Assembling the Model 280

11.7 Configuring the Analysis 280

11.8 Applying a Boundary Condition and a Load to the Model 280

11.9 Meshing the Model 282

11.10 Creating and Submitting an Analysis Job 284

11.11 Viewing the Analysis Results 284

11.12 Solving the Problem Using Quadrilaterals 284

11.13 Refining the Mesh 285

11.13.1 Bending of a Short Cantilever Beam 287

11.14 Copying the Model 287

11.15 Modifying the Material Definition 287

11.16 Configuring the Analysis 287

11.17 Applying a Boundary Condition and a Load to the Model 288

11.18 Meshing the Model 289

11.19 Creating and Submitting an Analysis Job 290

11.20 Viewing the Analysis Results 290

11.20.1 Plate with a Hole in Tension 290

11.21 Creating a New Model 292

11.22 Creating a Part 292

11.23 Creating a Material Definition 293

11.24 Defining and Assigning Section Properties 294

11.25 Assembling the Model 295

11.26 Configuring the Analysis 295

11.27 Applying a Boundary Condition and a Load to the Model 295

11.28 Meshing the Model 297

11.29 Creating and Submitting an Analysis Job 298

11.30 Viewing the Analysis Results 299

11.31 Refining the Mesh 299

Appendix 303

A.1 Rotation of Coordinate System in Three Dimensions 303

A.2 Scalar Product Theorem 304

A.3 Taylor’s Formula with Remainder and the Mean Value Theorem 304

A.4 Green’s Theorem 305

A.5 Point Force (Source) 307

A.6 Static Condensation 308

A.7 Solution Methods 309

Direct Solvers 310

Iterative Solvers 310

Conditioning 311

References 312

Problem 312

Index 313



About the Author :

rong>Jacob Fish The Rosalind and John J. Redfern, Jr. '33 Chaired Professor in Engineering Rensselaer Polytechnic Institute, Troy, NY
Dr. Fish has 20 years of experience (both industry and academia) in the field of multi-scale computational engineering, which bridges the gap between modeling, simulation and design of products based on multi-scale principles. Dr. Fish has published over one hundred journal articles and book chapters. Two of his papers, one on development of multilevel solution techniques for large scale systems presented at the 1995 ASME International Computers in Engineering Conference and the second one, on fatigue crack growth in aging aircraft presented at the 1993 Structures, Structural Dynamics, and Materials Conference have won the Best Paper Awards. Dr. Fish is a recipient of 2005 USACM Computational Structural Mechanics Award given "in recognition of outstanding and sustained contributions to the broad field of Computational Structural Mechanics". He is editor of the International Journal for Multiscale Computational Engineering.

Ted Belytschko, Department of Mechanical Engineering, Northwestern University, Evanston, IL
Ted Belytschko's main interests lie in the development of computational methods for engineering problems. He has developed explicit finite element methods that are widely used in crashworthiness analysis and virtual prototyping. He is also interested in engineering education, and he chaired the committee that developed the "Engineering First Program" at Northwestern.  He obtained his B.S. and Ph.D. at Illinois Institute of Technology in 1965 and 1968, respectively.  He has been at Northwestern since 1977 where he is currently Walter P. Murphy Professor and McCormick Distinguished Professor of Computational Mechanics. He is co-author of the book NONLINEAR FINITE ELEMENTS FOR CONTINUA AND STRUCTURES with W.K.Liu and B. Moran (published by Wiley and in the third printing) and he has edited more than 10 other books. n January 2004, he was listed as the 4th most cited researcher in engineering. He is past Chairman of the Engineering Mechanics Division of the ASCE, the Applied Mechanics Division of ASME, past President of USACM, and a member of the National Academy of Engineering (elected in 1992) and the American Academy of Arts and Sciences (elected in 2002). He is the editor of Numerical Methods in Engineering.



Review :
"Recommended for upper division undergraduates and above." (CHOICE, February 2008)


Best Sellers


Product Details
  • ISBN-13: 9780470510858
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: John Wiley & Sons Inc
  • Height: 243 mm
  • Returnable: N
  • Weight: 674 gr
  • ISBN-10: 0470510854
  • Publisher Date: 03 Aug 2007
  • Binding: Digital online
  • Language: English
  • Spine Width: 21 mm
  • Width: 168 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
A First Course in Finite Elements
John Wiley & Sons Inc -
A First Course in Finite Elements
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

A First Course in Finite Elements

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!