The EM Algorithm and Extensions
Home > Mathematics and Science Textbooks > Mathematics > Probability and statistics > The EM Algorithm and Extensions: (382 Wiley Series in Probability and Statistics)
The EM Algorithm and Extensions: (382 Wiley Series in Probability and Statistics)

The EM Algorithm and Extensions: (382 Wiley Series in Probability and Statistics)


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Table of Contents:
Preface to the Second Edition. Preface to the First Edition. List of Examples. 1. General Introduction. 1.1 Introduction. 1.2 Maximum Likelihood Estimation. 1.3 Newton-Type Methods. 1.4 Introductory Examples. 1.5 Formulation of the EM Algorithm. 1.6 EM Algorithm for MAP and MPL Estimation. 1.7 Brief Summary of the Properties of EM Algorithm. 1.8 History of the EM Algorithm. 1.9 Overview of the Book. 1.10 Notations. 2. Examples of the EM Algorithm. 2.1 Introduction. 2.2 Multivariate Data with Missing Values. 2.3 Least Square with the Missing Data. 2.4 Example 2.4: Multinomial with Complex Cell Structure. 2.5 Example 2.5: Analysis of PET and SPECT Data. 2.6 Example 2.6: Multivariate t-Distribution (Known D.F.). 2.7 Finite Normal Mixtures. 2.8 Example 2.9: Grouped and Truncated Data. 2.9 Example 2.10: A Hidden Markov AR(1) Model. 3. Basic Theory of the EM Algorithm. 3.1 Introduction. 3.2 Monotonicity of a Generalized EM Algorithm. 3.3 Monotonicity of a Generalized EM Algorithm. 3.4 Convergence of an EM Sequence to a Stationary Value. 3.5 Convergence of an EM Sequence of Iterates. 3.6 Examples of Nontypical Behavior of an EM (GEM) Sequence. 3.7 Score Statistic. 3.8 Missing Information. 3.9 Rate of Convergence of the EM Algorithm. 4. Standard Errors and Speeding up Convergence. 4.1 Introduction. 4.2 Observed Information Matrix. 4.3 Approximations to Observed Information Matrix: i.i.d. Case. 4.4 Observed Information Matrix for Grouped Data. 4.5 Supplemented EM Algorithm. 4.6 Bookstrap Approach to Standard Error Approximation. 4.7 Baker’s, Louis’, and Oakes’ Methods for Standard Error Computation. 4.8 Acceleration of the EM Algorithm via Aitken’s Method. 4.9 An Aitken Acceleration-Based Stopping Criterion. 4.10 conjugate Gradient Acceleration of EM Algorithm. 4.11 Hybrid Methods for Finding the MLE. 4.12 A GEM Algorithm Based on One Newton-Raphson Algorithm. 4.13 EM gradient Algorithm. 4.14 A Quasi-Newton Acceleration of the EM Algorithm. 4.15 Ikeda Acceleration. 5. Extension of the EM Algorithm. 5.1 Introduction. 5.2 ECM Algorithm. 5.3 Multicycle ECM Algorithm. 5.4 Example 5.2: Normal Mixtures with Equal Correlations. 5.5 Example 5.3: Mixture Models for Survival Data. 5.6 Example 5.4: Contingency Tables with Incomplete Data. 5.7 ECME Algorithm. 5.8 Example 5.5: MLE of t-Distribution with the Unknown D.F. 5.9 Example 5.6: Variance Components. 5.10 Linear Mixed Models. 5.11 Example 5.8: Factor Analysis. 5.12 Efficient Data Augmentation. 5.13 Alternating ECM Algorithm. 5.14 Example 5.9: Mixtures of Factor Analyzers. 5.15 Parameter-Expanded EM (PX-EM) Algorithm. 5.16 EMS Algorithm. 5.17 One-Step-Late Algorithm. 5.18 Variance Estimation for Penalized EM and OSL Algorithms. 5.19 Incremental EM. 5.20 Linear Inverse problems. 6. Monte Carlo Versions of the EM Algorithm. 6.1 Introduction. 6.2 Monte Carlo Techniques. 6.3 Monte Carlo EM. 6.4 Data Augmentation. 6.5 Bayesian EM. 6.6 I.I.D. Monte Carlo Algorithm. 6.7 Markov Chain Monte Carlo Algorithms. 6.8 Gibbs Sampling. 6.9 Examples of MCMC Algorithms. 6.10 Relationship of EM to Gibbs Sampling. 6.11 Data Augmentation and Gibbs Sampling. 6.12 Empirical Bayes and EM. 6.13 Multiple Imputation. 6.14 Missing-Data Mechanism, Ignorability, and EM Algorithm. 7. Some Generalization of the EM Algorithm. 7.1 Introduction. 7.2 Estimating Equations and Estimating Functions. 7.3 Quasi-Score and the Projection-Solution Algorithm. 7.4 Expectation-Solution (ES) Algorithm. 7.5 Other Generalization. 7.6 Variational Bayesian EM Algorithm. 7.7 MM Algorithm. 7.8 Lower Bound Maximization. 7.9 Interval EM Algorithm. 7.10 Competing Methods and Some Comparisons with EM. 7.11 The Delta Algorithm. 7.12 Image Space Reconstruction Algorithm. 8. Further Applications of the EM Algorithm. 8.1 Introduction. 8.2 Hidden Markov Models. 8.3 AIDS Epidemiology. 8.4 Neural Networks. 8.5 Data Mining. 8.6 Bioinformatics. References. Author Index. Subject Index.

About the Author :
Geoffrey J. McLachlan, PhD, DSc, is Professor of Statistics in the Department of Mathematics at The University of Queensland, Australia. A Fellow of the American Statistical Association and the Australian Mathematical Society, he has published extensively on his research interests, which include cluster and discriminant analyses, image analysis, machine learning, neural networks, and pattern recognition. Dr. McLachlan is the author or coauthor of Analyzing Microarray Gene Expression Data, Finite Mixture Models, and Discriminant Analysis and Statistical Pattern Recognition, all published by Wiley. Thriyambakam Krishnan, PhD, is Chief Statistical Architect, SYSTAT Software at Cranes Software International Limited in Bangalore, India. Dr. Krishnan has over forty-five years of research, teaching, consulting, and software development experience at the Indian Statistical Institute (ISI). His research interests include biostatistics, image analysis, pattern recognition, psychometry, and the EM algorithm.

Review :
"The EM Algorithm and Extension, Second Edition, serves as an excellent text for graduate-level statistics students and is also a comprehensive resource for theoreticians, practioners, and researchers in the social and physical sciences who would like to extend their knowledge of the EM algorithm." (Mathematical Review, Issue 2009e)


Best Sellers


Product Details
  • ISBN-13: 9780470191606
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: Wiley-Interscience
  • Edition: Revised edition
  • No of Pages: 400
  • ISBN-10: 0470191600
  • Publisher Date: 09 Nov 2007
  • Binding: Digital (delivered electronically)
  • Language: English
  • Series Title: 382 Wiley Series in Probability and Statistics


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
The EM Algorithm and Extensions: (382 Wiley Series in Probability and Statistics)
John Wiley & Sons Inc -
The EM Algorithm and Extensions: (382 Wiley Series in Probability and Statistics)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

The EM Algorithm and Extensions: (382 Wiley Series in Probability and Statistics)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!