Buy Approximate Dynamic Programming by Warren B. Powell
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Mathematics > Approximate Dynamic Programming: Solving the Curses of Dimensionality(Wiley Series in Probability and Statistics)
Approximate Dynamic Programming: Solving the Curses of Dimensionality(Wiley Series in Probability and Statistics)

Approximate Dynamic Programming: Solving the Curses of Dimensionality(Wiley Series in Probability and Statistics)


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

A complete and accessible introduction to the real-world applications of approximate dynamic programming With the growing levels of sophistication in modern-day operations, it is vital for practitioners to understand how to approach, model, and solve complex industrial problems. Approximate Dynamic Programming is a result of the author's decades of experience working in large industrial settings to develop practical and high-quality solutions to problems that involve making decisions in the presence of uncertainty. This groundbreaking book uniquely integrates four distinct disciplines—Markov design processes, mathematical programming, simulation, and statistics—to demonstrate how to successfully model and solve a wide range of real-life problems using the techniques of approximate dynamic programming (ADP). The reader is introduced to the three curses of dimensionality that impact complex problems and is also shown how the post-decision state variable allows for the use of classical algorithmic strategies from operations research to treat complex stochastic optimization problems. Designed as an introduction and assuming no prior training in dynamic programming of any form, Approximate Dynamic Programming contains dozens of algorithms that are intended to serve as a starting point in the design of practical solutions for real problems. The book provides detailed coverage of implementation challenges including: modeling complex sequential decision processes under uncertainty, identifying robust policies, designing and estimating value function approximations, choosing effective stepsize rules, and resolving convergence issues. With a focus on modeling and algorithms in conjunction with the language of mainstream operations research, artificial intelligence, and control theory, Approximate Dynamic Programming: Models complex, high-dimensional problems in a natural and practical way, which draws on years of industrial projects Introduces and emphasizes the power of estimating a value function around the post-decision state, allowing solution algorithms to be broken down into three fundamental steps: classical simulation, classical optimization, and classical statistics Presents a thorough discussion of recursive estimation, including fundamental theory and a number of issues that arise in the development of practical algorithms Offers a variety of methods for approximating dynamic programs that have appeared in previous literature, but that have never been presented in the coherent format of a book Motivated by examples from modern-day operations research, Approximate Dynamic Programming is an accessible introduction to dynamic modeling and is also a valuable guide for the development of high-quality solutions to problems that exist in operations research and engineering. The clear and precise presentation of the material makes this an appropriate text for advanced undergraduate and beginning graduate courses, while also serving as a reference for researchers and practitioners. A companion Web site is available for readers, which includes additional exercises, solutions to exercises, and data sets to reinforce the book's main concepts.

Table of Contents:
Preface. Acknowledgments. 1. The challenges of dynamic programming. 1.1 A dynamic programming example: a shortest path problem. 1.2 The three curses of dimensionality. 1.3 Some real applications. 1.4 Problem classes. 1.5 The many dialects of dynamic programming. 1.6 What is new in this book? 1.7 Bibliographic notes. 2. Some illustrative models. 2.1 Deterministic problems. 2.2 Stochastic problems. 2.3 Information acquisition problems. 2.4 A simple modeling framework for dynamic programs. 2.5 Bibliographic notes. Problems. 3. Introduction to Markov decision processes. 3.1 The optimality equations. 3.2 Finite horizon problems. 3.3 Infinite horizon problems. 3.4 Value iteration. 3.5 Policy iteration. 3.6 Hybrid valuepolicy iteration. 3.7 The linear programming method for dynamic programs. 3.8 Monotone policies. 3.9 Why does it work? 3.10 Bibliographic notes. Problems 4. Introduction to approximate dynamic programming. 4.1 The three curses of dimensionality (revisited). 4.2 The basic idea. 4.3 Sampling random variables . 4.4 ADP using the postdecision state variable. 4.5 Lowdimensional representations of value functions. 4.6 So just what is approximate dynamic programming? 4.7 Experimental issues. 4.8 Dynamic programming with missing or incomplete models. 4.9 Relationship to reinforcement learning. 4.10 But does it work? 4.11 Bibliographic notes. Problems. 5. Modeling dynamic programs. 5.1 Notational style. 5.2 Modeling time. 5.3 Modeling resources. 5.4 The states of our system. 5.5 Modeling decisions. 5.6 The exogenous information process. 5.7 The transition function. 5.8 The contribution function. 5.9 The objective function. 5.10 A measuretheoretic view of information. 5.11 Bibliographic notes. Problems. 6. Stochastic approximation methods. 6.1 A stochastic gradient algorithm. 6.2 Some stepsize recipes. 6.3 Stochastic stepsizes. 6.4 Computing bias and variance. 6.5 Optimal stepsizes. 6.6 Some experimental comparisons of stepsize formulas. 6.7 Convergence. 6.8 Why does it work? 6.9 Bibliographic notes. Problems. 7. Approximating value functions. 7.1 Approximation using aggregation. 7.2 Approximation methods using regression models. 7.3 Recursive methods for regression models. 7.4 Neural networks. 7.5 Batch processes. 7.6 Why does it work? 7.7 Bibliographic notes. Problems. 8. ADP for finite horizon problems. 8.1 Strategies for finite horizon problems. 8.2 Qlearning. 8.3 Temporal difference learning. 8.4 Policy iteration. 8.5 Monte Carlo value and policy iteration. 8.6 The actorcritic paradigm. 8.7 Bias in value function estimation. 8.8 State sampling strategies. 8.9 Starting and stopping. 8.10 A taxonomy of approximate dynamic programming strategies. 8.11 Why does it work? 8.12 Bibliographic notes. Problems. 9. Infinite horizon problems. 9.1 From finite to infinite horizon. 9.2 Algorithmic strategies. 9.3 Stepsizes for infinite horizon problems. 9.4 Error measures. 9.5 Direct ADP for online applications. 9.6 Finite horizon models for steady state applications. 9.7 Why does it work? 9.8 Bibliographic notes. Problems. 10. Exploration vs. exploitation. 10.1 A learning exercise: the nomadic trucker. 10.2 Learning strategies. 10.3 A simple information acquisition problem. 10.4 Gittins indices and the information acquisition problem. 10.5 Variations. 10.6 The knowledge gradient algorithm. 10.7 Information acquisition in dynamic programming. 10.8 Bibliographic notes. Problems. 11. Value function approximations for special functions. 11.1 Value functions versus gradients. 11.2 Linear approximations. 11.3 Piecewise linear approximations. 11.4 The SHAPE algorithm. 11.5 Regression methods. 11.6 Cutting planes. 11.7 Why does it work? 11.8 Bibliographic notes. Problems. 12. Dynamic resource allocation. 12.1 An asset acquisition problem. 12.2 The blood management problem. 12.3 A portfolio optimization problem. 12.4 A general resource allocation problem. 12.5 A fleet management problem. 12.6 A driver management problem. 12.7 Bibliographic references. Problems. 13. Implementation challenges. 13.1 Will ADP work for your problem? 13.2 Designing an ADP algorithm for complex problems. 13.3 Debugging an ADP algorithm. 13.4 Convergence issues. 13.5 Modeling your problem. 13.6 Online vs. offline models. 13.7 If it works, patent it!

About the Author :
Warren B. Powell, PhD, is Professor of Operations Research and Financial Engineering at Princeton University, where he is founder and Director of CASTLE Laboratory, a research unit that works with industrial partners to test new ideas found in operations research. The recipient of the 2004 INFORMS Fellow Award, Dr. Powell has authored over 100 refereed publications on stochastic optimization, approximate dynamic programming, and dynamic resource management.

Review :
"Perhaps the most appealing aspect of Professor Powell’s book is the fact that it spans both theory and practice...Problems, deemed intractable a few years ago, are now easily solved by using the exhibited techniques in this book. I would strongly recommend the book to any practitioner facing complex, dynamic models involving constantly changing information streams." (IIE Transactions-Operations Engineering, 2008)  "Focus[es] on the core … of dynamic programming with a simple and clear exposition of the material … while … elevating the standard of the theory."*(Computing Reviews, May 5, 2008)  "Motivated by examples from modern-day operations research, Approximate Dynamic Programming is an accessible introduction to dynamic modeling and is also a valuable guide for the development of high-quality solutions to problems that exist in operations research and engineering.  (Mathematical Reviews, 2008)


Best Sellers


Product Details
  • ISBN-13: 9780470182963
  • Publisher: John Wiley & Sons Inc
  • Publisher Imprint: Wiley-Interscience
  • Language: English
  • Series Title: Wiley Series in Probability and Statistics
  • Weight: 10 gr
  • ISBN-10: 0470182962
  • Publisher Date: 29 Mar 2007
  • Binding: Digital online
  • No of Pages: 480
  • Sub Title: Solving the Curses of Dimensionality


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Approximate Dynamic Programming: Solving the Curses of Dimensionality(Wiley Series in Probability and Statistics)
John Wiley & Sons Inc -
Approximate Dynamic Programming: Solving the Curses of Dimensionality(Wiley Series in Probability and Statistics)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Approximate Dynamic Programming: Solving the Curses of Dimensionality(Wiley Series in Probability and Statistics)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!