Deep Learning for Synthetic Aperture Radar Remote Sensing
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Business and Economics > Business and Management > Operational research > Deep Learning for Synthetic Aperture Radar Remote Sensing
Deep Learning for Synthetic Aperture Radar Remote Sensing

Deep Learning for Synthetic Aperture Radar Remote Sensing


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Deep Learning for Synthetic Aperture Radar Remote Sensing delves into the transformative synergy between synthetic aperture radar (SAR) and cutting-edge machine learning techniques. Traditionally rooted in signal processing, SAR's active imaging capabilities rise above optical limitations, offering resilience to environmental factors like cloud cover. This book showcases how machine learning augments every stage of SAR image processing, from raw data refinement to advanced information extraction. Through comprehensive coverage of acquisition modes and processing methodologies, including polarimetry and interferometry, this book equips readers with the tools to harness SAR's full potential. Aiming to further enhance remote sensing imaging, it serves as a vital resource for those seeking to integrate SAR data seamlessly into the modern machine learning landscape. Deep Learning for Synthetic Aperture Radar Remote Sensing addresses a critical gap in the intersection of SAR technology and machine learning, offering a pioneering roadmap for researchers and practitioners alike. With its emphasis on modern techniques, it serves as a catalyst for unlocking SAR's untapped potential and shaping the future of Earth observation.

Table of Contents:
1. Remote Sensing with Synthetic Aperture Radar (SAR) 2. Machine Learning Basics 3. SAR Image Formation 4. Data Compression 5. Despeckling 6. SAR Interferometry (Phase and Coherence Estimation, Phase Unwrapping) 7. SAR Tomography 8. Single-Image Height Estimation 9. Object Detection 10. Land Cover Classification 11. Change Detection 12. Retrieval of Bio-/geophysical Parameters 13. Future Outlook

About the Author :
Michael Schmitt has been a Full Professor for Earth Observation at the Department of Aerospace Engineering of the University of the Bundeswehr Munich (UniBw M) in Neubiberg, Germany, since 2021. From 2020 to 2022, he additionally held the position of a Consulting Senior Scientist at the Remote Sensing Technology Institute of the German Aerospace Center (DLR). Before joining UniBw M, he was a Professor for Applied Geodesy and Remote Sensing at the Munich University of Applied Sciences, Department of Geoinformatics. From 2015 to 2020, he was a Senior Researcher and Deputy Head at the Professorship for Signal Processing in Earth Observation at TUM; in 2019 he was additionally appointed as Adjunct Teaching Professor at the Department of Aerospace and Geodesy of TUM. In 2016, he was a guest scientist at the University of Massachusetts, Amherst. His research focuses on technical aspects of Earth observation, in particular image analysis and machine learning applied to the extraction of information from multi-modal remote sensing observations. Ronny Hänsch is a scientist at the Microwave and Radar Institute of the German Aerospace Center (DLR) where he leads the Machine Learning Team in the Signal Processing Group of the SAR Technology Department. His research interest is computer vision and machine learning with a focus on remote sensing (in particular SAR processing and analysis). He was chair of the GRSS Image Analysis and Data Fusion (IADF) technical committee 2021-23, and serves as co-chair of the ISPRS working group on Image Orientation and Sensor Fusion, as editor in chief of the Geoscience and Remote Sensing Letters. associate editor the ISPRS Journal of Photogrammetry and Remote Sensing, and organizer of the CVPR Workshop EarthVision (2017-2024) and the IGARSS Tutorial on Machine Learning in Remote Sensing (2017-2024). He has extensive experience in organizing remote sensing community competitions (e.g. SpaceNet and the GRSS Data Fusion Contest).


Best Sellers


Product Details
  • ISBN-13: 9780443363443
  • Publisher: Elsevier - Health Sciences Division
  • Publisher Imprint: Elsevier - Health Sciences Division
  • Height: 229 mm
  • No of Pages: 350
  • Width: 152 mm
  • ISBN-10: 0443363447
  • Publisher Date: 01 Dec 2025
  • Binding: Paperback
  • Language: English
  • Weight: 450 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Deep Learning for Synthetic Aperture Radar Remote Sensing
Elsevier - Health Sciences Division -
Deep Learning for Synthetic Aperture Radar Remote Sensing
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Deep Learning for Synthetic Aperture Radar Remote Sensing

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!