Multimodal Learning Using Heterogeneous Data - Bookswagon UAE
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Databases > Data capture and analysis > Multimodal Learning Using Heterogeneous Data
Multimodal Learning Using Heterogeneous Data

Multimodal Learning Using Heterogeneous Data


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Multimodal Learning Using Heterogeneous Data is a comprehensive guide to the emerging field of multimodal learning, which focuses on integrating diverse data types such as text, images, and audio within a unified framework. The book delves into the challenges and opportunities presented by multimodal data and offers insights into the foundations, techniques, and applications of this interdisciplinary approach. It is intended for researchers and practitioners interested in learning more about multimodal learning and is a valuable resource for those working on projects involving data analysis from multiple modalities. The book begins with a comprehensive introduction, focusing on multimodal learning's foundational principles and the intricacies of heterogeneous data. It then delves into feature extraction, fusion techniques, and deep learning architectures tailored for multimodal data. It also covers transfer learning, pre-processing challenges, and cross-modal information retrieval. The book highlights the application of multimodal learning in specialized contexts such as sentiment analysis, data generation, medical imaging, and ethical considerations. Real-world case studies are woven into the narrative, illuminating the applications of multimodal learning in diverse domains such as natural language processing, multimedia content analysis, autonomous systems, and cognitive computing. The book concludes with an insightful exploration of multimodal data analytics across social media, surveillance, user behavior, and a forward-looking examination of future trends and practical implementations. As a collective resource, Multimodal Learning Using Heterogeneous Data illuminates the powerful utility of multimodal learning to elevate machine learning tasks while also highlighting the need for innovative solutions and methodologies. The book acknowledges the challenges associated with deep learning and the growing importance of ethical considerations in the collection and analysis of multimodal data. Overall, Multimodal Learning Using Heterogeneous Data provides an expansive panorama of this rapidly evolving field, its potential for future research and application, and its vital role in shaping machine learning's evolution.

Table of Contents:
1. Introduction to Multimodal Learning and Heterogenous Data 2. Foundations of Multimodal Data Representation 3. Modalities in Data: Understanding Text, Images, and Audio 4. Feature Extraction and Fusion Techniques for Multimodal Data 5. Deep Learning Architectures for Multimodal Fusion 6. Transfer Learning in Multimodal Settings 7. Challenges in Preprocessing and Normalization of Heterogenous Data 8. Cross-Modal Information Retrieval and Recommendation 9. Multimodal Sentiment Analysis: Integrating Text, Images, and Audio 10. Multimodal Data Generation and Synthesis 11. Fusion Techniques for Medical Imaging and Clinical Data 12. Ethical Considerations in Multimodal Data Collection and Analysis 13. Case Studies: Multimodal Applications in Natural Language Processing 14. Visual-Audio Fusion in Multimedia Content Analysis 15. Multimodal Learning for Autonomous Systems and Robotics 16. Cognitive Computing: Merging Modalities for Human-Like AI 17. Multimodal Data Analytics for Social Media and User Behavior 18. Surveillance and Security: Integrating Video, Audio, and Sensor Data 19. Challenges and Opportunities in Multimodal Learning Research 20. Future Trends in Multimodal Learning: From Theory to Practical Applications

About the Author :
Saeid Eslamian received his PhD in Civil and Environmental Engineering from University of New South Wales, Australia in 1998. Saeid was Visiting Professor in Princeton University and ETH Zurich in 2005 and 2008 respectively. He has contributed to more than 1K publications in journals, conferences, books. Eslamian has been appointed as 2-Percent Top Researcher by Stanford University for several years. Currently, he is full professor of Hydrology and Water Resources and Director of Excellence Center in Risk Management and Natural Hazards. Isfahan University of Technology, His scientific interests are Floods, Droughts, Water Reuse, Climate Change Adaptation, Sustainability and Resilience Dr. Preethi Nanjundan received her Ph.D. degree in Semantic Web in 2014 and awarded Highly Commended from Bharathiar University, Coimbatore, India. She is currently working as an Associate Professor in Christ (Deemed to be University), Lavasa campus, Pune. Her research interests are Semantic web, Machine learning, Deep Learning etc. She has published 3 books and 2 chapters. Dr. Jossy George has been working with Christ University, Bengaluru, and other associated institutions in various capacities and is currently serving as the Director & Dean at Pune Lavasa Campus. He has a dual master’s degree in computer science and human resources from the USA and has done his FDPM from IIMA. He has been awarded a Doctorate in Computer Science by Christ University, Bengaluru. He is also a member of the IACSIT and Computer Society of India. Faezeh Eslamian is a PhD holder of bioresource engineering from McGill University. Her research focuses on the development of a novel lime-based product to mitigate phosphorus loss from agricultural fields. Faezeh completed her bachelor’s and master’s degrees in civil and environmental engineering from Isfahan University of Technology, Iran, where she evaluated natural and low-cost absorb bents for the removal of pollutants such as textile dyes and heavy metals. Furthermore, she has conducted research on the worldwide water quality standards and wastewater reuse guidelines. Faezeh is an experienced multidisciplinary researcher with research interests in soil and water quality, environmental remediation, water reuse, and drought management.


Best Sellers


Product Details
  • ISBN-13: 9780443275289
  • Publisher: Elsevier Science & Technology
  • Publisher Imprint: Morgan Kaufmann Publishers In
  • Height: 235 mm
  • No of Pages: 250
  • Width: 191 mm
  • ISBN-10: 0443275289
  • Publisher Date: 19 Dec 2025
  • Binding: Paperback
  • Language: English
  • Weight: 750 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Multimodal Learning Using Heterogeneous Data
Elsevier Science & Technology -
Multimodal Learning Using Heterogeneous Data
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Multimodal Learning Using Heterogeneous Data

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!