Mobility Patterns, Big Data and Transport Analytics
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Transport technology and trades > Intelligent and automated transport system technology > Mobility Patterns, Big Data and Transport Analytics: Tools and Applications for Modeling
Mobility Patterns, Big Data and Transport Analytics: Tools and Applications for Modeling

Mobility Patterns, Big Data and Transport Analytics: Tools and Applications for Modeling


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

Mobility Patterns, Big Data and Transport Analytics: Tools and Applications for Modeling, Second Edition provides a guide to the new analytical framework and its relation to big data, focusing on capturing, predicting, visualizing, and controlling mobility patterns—a key aspect of transportation modeling. The book features prominent international experts who provide overviews on new analytical frameworks, applications, and concepts in mobility analysis and transportation systems. Fields covered are evolving rapidly, and this new edition updates existing material and provides new chapters that reflect recent developments in the field (such as the emergence of active, transfer and reinforcement learning). Users will find a detailed, mobility ‘structural’ analysis and a look at the extensive behavioral characteristics of transport, observability requirements, limitations for realistic transportation applications, and transportation systems analysis that are related to complex processes and phenomena. This book bridges the gap between big data, data science, and transportation systems analysis with a study of big data’s impact on mobility and an introduction to the tools necessary to apply new techniques.

Table of Contents:
1. Big data and transport analytics Part I 2. Machine Learning Fundamentals 3. Using Semantic Signatures for Social Sensing in Urban Environments 4. Geographic Space as a Living Structure for Predicting Human Activities Using Big Data 5. Data Preparation 6. Data Science and Data Visualization 7. Model-Based Machine Learning for Transportation 8. Capturing Travel Behavior Patterns on the Anticipating Transportation Technologies and Services 9. Reinforcement Learning for Transport Applications 10. Foundational principles of learner representations Part II 11. Statewide Comparison of Origin-Destination Matrices Between California Travel Model and Twitter 12. Transit Data Analytics for Planning, Monitoring, Control, and Information 13. A bridge between transit collective mobility patterns and fundamental economics 14. Data-Driven Traffic Simulation Models: Mobility Patterns Using Machine Learning Techniques 15. Big Data and Road Safety: A Comprehensive Review 16. A Back-Engineering Approach to Explore Human Mobility Patterns Across Megacities Using Online Traffic Maps 17. Pavement Patch Defects Detection and Classification Using Smartphones, Vibration Signals and Video Images 18. Collaborative Positioning for Urban Intelligent Transportation Systems (ITS) and Personal Mobility (PM): Challenges and Perspectives 19. Experiences with emerging data collection 20. Machine Learning methods for processing time series count data in Transportation 21. Analysing Travel Patterns on Data Collected by Bicycle Sharing Systems 22. Optimal Pricing Schemes in the Maritime Market: Implementations by Deep RL 23. Inequalities in mobility: Data-driven analysis of social equity issues in transport 24. Conclusion

About the Author :
Constantinos Antoniou is a Professor and Chair of Transportation Systems Engineering at the Technical University of Munich, Germany. He was previously an Associate Professor at the National Technical University of Athens, Greece. His research focuses on modelling and simulation of transportation systems, Intelligent Transport Systems (ITS), calibration and optimization applications, road safety and sustainable transport system. Antoniou has been involved in a large number of projects, primarily in Europe and the US, and has authored more than 500 scientific publications, including in Elsevier’s Transportation Research Part C: Emerging Technologies (for which he serves on the editorial board) and Transportation Research Part A: Policy and Practice (for which he serves as an Associate Editor). Loukas Dimitriou is an Assistant Professor in the Department of Civil and Environmental Engineering, University of Cyprus (UCY) and founder and head of the Lab for Transport Engineering, UCY. His research interests focus on the application of advanced computational intelligence methods, concepts and techniques for understanding the complex phenomena involved in realistic transport systems, and developing design and control strategies. The methodological paradigms that he proposes utilize elements from Data Science, behavioral analytics, complex systems modelling and advanced optimization, applied in traditional fields of transport, like demand modelling, travel behavior and systems organization, optimization and control. He has more than 100 publications in peer-reviewed journals, proceedings of conferences and book chapters, while he is an active member of international scientific organizations and committees. Francisco Pereira is a Professor at the Technical University of Denmark, in Kongens Lyngby, Denmark, where he leads the Smart Mobility research group. Previously, he was Senior Research Scientist at MIT/CEE ITSLab, where he worked on real-time traffic prediction, behavior modeling, and advanced data collection technologies, both in Boston and Singapore, as part of the Singapore-MIT Alliance for Research and Technology, Future Urban Mobility project (SMART/FM). His main research focus is on applying machine learning and pattern recognition to the context of transportation systems with the purpose of understanding and predicting mobility behavior, and modeling and optimizing the transportation system as a whole. He has been published in many journals, including in Elsevier’s Transportation Research Part C: Emerging Technologies.


Best Sellers


Product Details
  • ISBN-13: 9780443267895
  • Publisher: Elsevier - Health Sciences Division
  • Publisher Imprint: Elsevier - Health Sciences Division
  • Height: 229 mm
  • No of Pages: 632
  • Weight: 750 gr
  • ISBN-10: 0443267898
  • Publisher Date: 23 Jan 2026
  • Binding: Paperback
  • Language: English
  • Sub Title: Tools and Applications for Modeling
  • Width: 152 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Mobility Patterns, Big Data and Transport Analytics: Tools and Applications for Modeling
Elsevier - Health Sciences Division -
Mobility Patterns, Big Data and Transport Analytics: Tools and Applications for Modeling
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Mobility Patterns, Big Data and Transport Analytics: Tools and Applications for Modeling

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!