Machine Learning in MRI by Hao Huang at Bookstore UAE
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Medicine & Health Science textbooks > Nursing and ancillary services > Biomedical engineering > Machine Learning in MRI: Volume 13 From Methods to Clinical Translation(Volume 13 Advances in Magnetic Resonance Technology and Applications)
Machine Learning in MRI: Volume 13 From Methods to Clinical Translation(Volume 13 Advances in Magnetic Resonance Technology and Applications)

Machine Learning in MRI: Volume 13 From Methods to Clinical Translation(Volume 13 Advances in Magnetic Resonance Technology and Applications)


     0     
5
4
3
2
1



International Edition


X
About the Book

Machine Learning in MRI: From Methods to Clinical Translation, Volume Thirteen in the Advances in Magnetic Resonance Technology and Applications series presents state-of-the-art machine learning methods in magnetic resonance imaging that can shape and impact the future of patient treatment and planning. Common methods and strategies along the processing chain of data acquisition, image reconstruction, image post-processing, and image analysis of these imaging modalities are presented and illustrated. The book focuses on applications and anatomies for which machine learning methods can bring, or have already brought. Ideas and concepts on how processing could be harmonized and used to provide deployable frameworks that integrate into the clinical workflows are also considered. Pitfalls and current limitations are discussed in the context of how they could be overcome to cater for clinical needs, making this an ideal reference for medical imaging researchers, industry scientists and engineers, advanced undergraduate and graduate students, and clinicians. By giving an interdisciplinary presentation and discussion on the obstacles and possible solutions for the clinical translation of machine learning methods, this book enables the evolution of machine learning in medical imaging for the next decade.

Table of Contents:
Part One: Basics of Machine Learning and Magnetic Resonance Imaging 1. The statistics behind Machine Learning 2. The Ingredients for Machine Learning 3. Introduction to the Physics behind MR Part Two: MR Image Acquisition 4. Adjust to your imaging scenario: learning and optimizing MR sampling 5. MR Imaging in the low field: Leveraging the power of machine learning 6. The Smart spin: Machine learning for magnetic resonance spectroscopy Part Three: MR Image Reconstruction 7. Get the Image: Machine Learning for MR image reconstruction 8. Enhance the Image: Super resolution in MRI 9. Freeze the motion: Machine Learning for motion correction 10. Map the Image: Machine learning for quantitative MR Mapping 11. Am (A)I hallucinating: Robustness of MR Image reconstruction Part Four: MR image Post-Processing 12. Cut it here: Image Segmentation for MRI 13. Quality Matters: Automated MR Image Quality control 14. What is beyond the image? Machine Learning for MR Image Analysis 15. Give me that other image: machine learning for image-to-image translation Part Five: Generalization and Fairness 16. The cause and effect of an MR image: Robustness and generalizability 17. Scale it up: Large-scale MR data processing 18. Human in the loop: integration of experts to MR Data Processing Part Six: Clinical Application 19. Clinical Applications of machine learning in brain, neck and spine MRI 20. Clinical Applications of machine learning in cardiac MRI 21. Clinical Applications of machine learning in body MRI 22. Clinical Applications of machine learning in breast MRI 23. Clinical Applications of Machine Learning in musculoskeletal MRI Part Seven: Reproducibility 24. Let’s share: Open-Source frameworks and public databases 25. System under test: challenges for algorithm benchmarking Part Eight: Conclusion 26. Future Challenges and Directions

About the Author :
Prof. Dr.-Ing. Thomas Küstner (Member, IEEE; Junior Fellow, ISMRM) is the chair of medical imaging and data analysis (MIDAS.lab) at the University Hospital of Tübingen, Germany. He received his PhD from the University of Stuttgart, Germany, in 2017. From 2018 to 2020 he was with the School of Biomedical Engineering and Imaging Sciences at King’s College London, United Kingdom. Since 2020 he co-leads the MIDAS.lab and in 2022 got appointed a professorship at the University Hospital of Tübingen, Germany about data engineering and advanced processing for medical imaging modalities. He is the spokesperson of the cross-section area for artificial intelligence-based infrastructure, data and methods in the clinic. His research group is working on artificial intelligence-enabled multi-parametric and multi-modality medical imaging methods in acquisition and reconstruction, and the automated analysis of clinical and epidemiological studies. He is particularly focused on MR-based motion imaging, correction and reconstruction, and the advents of artificial intelligence in MRI. Dr. Hao Huang is a Professor of Radiology in the Perelman School of Medicine at the University of Pennsylvania and Faculty Director of Small Animal Imaging Facility at Children’s Hospital of Philadelphia. He obtained his PhD in Biomedical Engineering from Johns Hopkins University School of Medicine in 2005. By pushing technical boundaries in advanced neural MRI acquisition and analysis, his works provide new knowledge on understanding circuits and functions of brain in health and disease. He has published more than 150 peer-reviewed articles and is one of the top scientists in neuroimaging and neurobiological sciences with cutting-edge techniques in diffusion, perfusion and functional MRI as well as artificial intelligence algorithms. He is on the Editorial Board of NeuroImage. He has served in a number of leadership positions in international committees. He has been recognized as the Distinguished Investigator of the Academy for Radiology and Biomedical Imaging Research in 2019. He has been elected as the Fellow of American Institute of Medical and Biological Engineering (AIMBE) in 2021. He has been elected as the Fellow of International Society of Magnetic Resonance in Medicine (ISMRM) in 2022. Dr. Christian Baumgartner is currently heading the Machine Learning for Medical Image Analysis Group which is part of the Cluster of Excellence: Machine Learning - New Perspectives for Science, at the University of Tübingen. Before joining the University of Tübingen, Christian was working in a senior research engineering role at PTC Vuforia, where he focused on research and development of machine learning technology for augmented reality applications. Prior to this, he was a Post-doc at the Biomedical Image Computing Group at ETH Zürich, and before in the Biomedical Image Analysis Lab at Imperial College London. Christian completed his PhD in 2016 under the joint supervision of Prof. Andy King and Prof. Daniel Rueckert at King’s College London in the School of Biomedical Engineering & Imaging Sciences. He obtained his Master’s degree in Biomedical Engineering and my Bachelor’s degree in Information Technology and Electrical Engineering from ETH Zürich. Dr. Sam Payabvash, MD is an assistant professor of radiology at Yale University. He joined Yale in 2018 after completing fellowship and working as clinical instructor at UCSF. As a neuroimaging clinician scientist and neuroradiologist Dr. Payabvash and his lab apply advanced neuroimaging techniques and analysis to drive innovation and improve the lives of patients. His research is focused on the translation of novel neuroimaging modalities, quantitative analysis, and machine intelligence to clinical practice for informed treatment planning, personalized patient care, and clinical trial design. Through multidisciplinary collaboration with clinicians, scientists, and patient advocates, his team aims to translate emerging technologies into day-to-day clinical practice with focus on brain, head, and neck tumors.


Best Sellers


Product Details
  • ISBN-13: 9780443141096
  • Publisher: Elsevier Science Publishing Co Inc
  • Publisher Imprint: Academic Press Inc
  • Height: 235 mm
  • No of Pages: 375
  • Sub Title: Volume 13 From Methods to Clinical Translation
  • Width: 191 mm
  • ISBN-10: 0443141096
  • Publisher Date: 19 Dec 2025
  • Binding: Paperback
  • Language: English
  • Series Title: Volume 13 Advances in Magnetic Resonance Technology and Applications
  • Weight: 750 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Machine Learning in MRI: Volume 13 From Methods to Clinical Translation(Volume 13 Advances in Magnetic Resonance Technology and Applications)
Elsevier Science Publishing Co Inc -
Machine Learning in MRI: Volume 13 From Methods to Clinical Translation(Volume 13 Advances in Magnetic Resonance Technology and Applications)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Machine Learning in MRI: Volume 13 From Methods to Clinical Translation(Volume 13 Advances in Magnetic Resonance Technology and Applications)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!