Applied Statistical Modelling for Ecologists - Bookswagon UAE
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Biology, life sciences > Life sciences: general issues > Ecological science, the Biosphere > Applied Statistical Modelling for Ecologists: A Practical Guide to Bayesian and Likelihood Inference Using R, JAGS, NIMBLE, Stan and TMB
Applied Statistical Modelling for Ecologists: A Practical Guide to Bayesian and Likelihood Inference Using R, JAGS, NIMBLE, Stan and TMB

Applied Statistical Modelling for Ecologists: A Practical Guide to Bayesian and Likelihood Inference Using R, JAGS, NIMBLE, Stan and TMB


     0     
5
4
3
2
1



International Edition


X
About the Book

**2025 PROSE Award Finalist in Environmental Science** Applied Statistical Modelling for Ecologists provides a gentle introduction to the essential models of applied statistics: linear models, generalized linear models, mixed and hierarchical models. All models are fit with both a likelihood and a Bayesian approach, using several powerful software packages widely used in research publications: JAGS, NIMBLE, Stan, and TMB. In addition, the foundational method of maximum likelihood is explained in a manner that ecologists can really understand. This book is the successor of the widely used Introduction to WinBUGS for Ecologists (Kéry, Academic Press, 2010). Like its parent, it is extremely effective for both classroom use and self-study, allowing students and researchers alike to quickly learn, understand, and carry out a very wide range of statistical modelling tasks. The examples in Applied Statistical Modelling for Ecologists come from ecology and the environmental sciences, but the underlying statistical models are very widely used by scientists across many disciplines. This book will be useful for anybody who needs to learn and quickly become proficient in statistical modelling, with either a likelihood or a Bayesian focus, and in the model-fitting engines covered, including the three latest packages NIMBLE, Stan, and TMB.

Table of Contents:
1. Introduction 2. Introduction to statistical inference 3. Linear regression models and their extensions to generalized linear, hierarchical and integrated models 4. Introduction to general-purpose model-fitting engines and the model of the mean 5. Simple linear regression with Normal errors 6. Comparison of two groups 7. Comparisons among multiple groups 8. Comparisons in two classifications or with two categorical covariates 9. General linear model with continuous and categorical explanatory variables 10. Linear mixed-effects model 11. Introduction to the Generalized linear model (GLM): Comparing two groups in a Poisson regression 12. Overdispersion, zero-inflation and offsets in a GLM 13. Poisson regression with both continuous and categorical explanatory variables 14. Poisson mixed-effects model or Poisson GLMM 15. Comparing two groups in a Binomial regression 16. Binomial GLM with both continuous and categorical explanatory variables 17. Binomial mixed-effects model or Binomial GLMM 18. Model building, model checking and model selection 19. General hierarchical models: Site-occupancy species distribution model (SDM) 20. Integrated models 21. Conclusion

About the Author :
Dr. Marc works as a senior scientist at the Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland. This is a non-profit NGO with about 160 employees dedicated primarily to bird research, monitoring, and conservation. Marc was trained as a plant population ecologist at the Swiss Universities of Basel and Zuerich. After a 2-year postdoc at the (then) USGS Patuxent Wildlife Center in Laurel, MD. During the last 20 years he has worked at the interface between population ecology, biodiversity monitoring, wildlife management, and statistics. He has published more than 100 peer-reviewed journal articles and five textbooks on applied statistical modeling. He has also been very active in teaching fellow biologists and wildlife managers the concepts and tools of modern statistical analysis in their fields in workshops all over the world, something which goes together with his books, which target the same audiences. Dr. Ken Kellner is an Assistant Research Professor at Michigan State University, MI, United States. Prior to his current position, he completed a Ph.D. in forest ecology at Purdue University, IN, United States, and a postdoc at West Virginia University, WV, United States. Ken's research has covered a wide range of topics including forest management, plant demography, and avian and mammal conservation. He has published this research in more than 40 peer reviewed publications. In addition, Ken is particularly focused on the development of open-source software tools for ecological modeling. He has developed or contributed to several software packages that are widely used by ecologists and featured in several books, including the successful R packages jagsUI, unmarked, and ubms.



Product Details
  • ISBN-13: 9780443137150
  • Publisher: Elsevier - Health Sciences Division
  • Publisher Imprint: Elsevier - Health Sciences Division
  • Height: 235 mm
  • No of Pages: 550
  • Weight: 1118 gr
  • ISBN-10: 0443137153
  • Publisher Date: 18 Jul 2024
  • Binding: Paperback
  • Language: English
  • Sub Title: A Practical Guide to Bayesian and Likelihood Inference Using R, JAGS, NIMBLE, Stan and TMB
  • Width: 191 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Applied Statistical Modelling for Ecologists: A Practical Guide to Bayesian and Likelihood Inference Using R, JAGS, NIMBLE, Stan and TMB
Elsevier - Health Sciences Division -
Applied Statistical Modelling for Ecologists: A Practical Guide to Bayesian and Likelihood Inference Using R, JAGS, NIMBLE, Stan and TMB
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Applied Statistical Modelling for Ecologists: A Practical Guide to Bayesian and Likelihood Inference Using R, JAGS, NIMBLE, Stan and TMB

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!