Sparse Graphical Modeling for High Dimensional Data
Home > Mathematics and Science Textbooks > Mathematics > Probability and statistics > Sparse Graphical Modeling for High Dimensional Data: A Paradigm of Conditional Independence Tests(Chapman & Hall/CRC Monographs on Statistics and Applied Probability)
Sparse Graphical Modeling for High Dimensional Data: A Paradigm of Conditional Independence Tests(Chapman & Hall/CRC Monographs on Statistics and Applied Probability)

Sparse Graphical Modeling for High Dimensional Data: A Paradigm of Conditional Independence Tests(Chapman & Hall/CRC Monographs on Statistics and Applied Probability)


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

This book provides a general framework for learning sparse graphical models with conditional independence tests. It includes complete treatments for Gaussian, Poisson, multinomial, and mixed data; unified treatments for covariate adjustments, data integration, and network comparison; unified treatments for missing data and heterogeneous data; efficient methods for joint estimation of multiple graphical models; effective methods of high-dimensional variable selection; and effective methods of high-dimensional inference. The methods possess an embarrassingly parallel structure in performing conditional independence tests, and the computation can be significantly accelerated by running in parallel on a multi-core computer or a parallel architecture. This book is intended to serve researchers and scientists interested in high-dimensional statistics, and graduate students in broad data science disciplines. Key Features: A general framework for learning sparse graphical models with conditional independence tests Complete treatments for different types of data, Gaussian, Poisson, multinomial, and mixed data Unified treatments for data integration, network comparison, and covariate adjustment Unified treatments for missing data and heterogeneous data Efficient methods for joint estimation of multiple graphical models Effective methods of high-dimensional variable selection Effective methods of high-dimensional inference

Table of Contents:
1. Introduction to Sparse Graphical Models 2. Gaussian Graphical Models 3. Gaussian Graphical Modeling with Missing Data 4. Gaussian Graphical Modeling for Heterogeneous Data 5. Poisson Graphical Models 6. Mixed Graphical Models 7. Joint Estimation of Multiple Graphical Models 8. Nonlinear and Non-Gaussian Graphical Models 9. High-Dimensional Inference with the Aid of Sparse Graphical Modeling 10. Appendix

About the Author :
Dr. Faming Liang is Distinguished Professor of Statistics, Purdue University. Prior joining Purdue University in 2017, he held regular faculty positions in the Department of Biostatistics, University of Florida and Department of Statistics, Texas A&M University. Dr. Liang obtained his PhD degree from the Chinese University of Hong Kong in 1997. Dr. Liang is ASA fellow, IMS fellow, and elected member of International Statistical Association. Dr. Liang is also a winner of Youden Prize 2017. Dr. Liang has served as co-editor for Journal of Computational and Graphical Statistics, associate editor for multiple statistical journals, including Journal of the American Statistical Association, Journal of Computational and Graphical Statistics, Technometrics, Bayesian Analysis, and Biometrics, and editorial board member for Nature Scientific Report. Dr. Liang has published two books and over 130 journal/conference papers, which involve a variety of research fields such as Markov chain Monte Carlo, machine learning, bioinformatics, high-dimensional statistics, and big data computing. Dr. Bochao Jia is research scientist at Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, U.S.A. Dr. Jia obtained his PhD degree from University of Florida in 2018. Dr. Jia has published quite a few papers on sparse graphical modelling.

Review :
"This book is highly recommended for statistical researchers working in high-dimensional graphical modeling, data scientists, graduate students, and graduates in statistics, biostatistics, biology, computing, or various disciplines. This book provides readers with an in-depth understanding of various methods and techniques in modern data analysis, especially in mixed data, high-dimensional data, and graphical models." Vira Ananda, Institut Teknologi Bandung, Indonesia, Technometrics, May 2024. "Consider this book not merely as a manual but as a gateway to mastering the art and science of sparse graphical modeling. It stands ready to serve as both a seasoned guide for professionals and an enlightening companion for students. In a field increasingly recognized for its critical importance, this text shines as a beacon, guiding beginners and applied scientists alike." Reza Mohammadi, University of Amsterdam, Netherlands, Journal of the American Statistical Association, July 2024.


Best Sellers


Product Details
  • ISBN-13: 9780429584800
  • Publisher: Taylor & Francis Ltd
  • Binding: Digital (delivered electronically)
  • Series Title: Chapman & Hall/CRC Monographs on Statistics and Applied Probability
  • ISBN-10: 0429584806
  • Publisher Date: 02 Aug 2023
  • Language: English
  • Sub Title: A Paradigm of Conditional Independence Tests


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Sparse Graphical Modeling for High Dimensional Data: A Paradigm of Conditional Independence Tests(Chapman & Hall/CRC Monographs on Statistics and Applied Probability)
Taylor & Francis Ltd -
Sparse Graphical Modeling for High Dimensional Data: A Paradigm of Conditional Independence Tests(Chapman & Hall/CRC Monographs on Statistics and Applied Probability)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Sparse Graphical Modeling for High Dimensional Data: A Paradigm of Conditional Independence Tests(Chapman & Hall/CRC Monographs on Statistics and Applied Probability)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!