Buy Inference in Hidden Markov Models at Bookstore UAE
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Mathematics > Applied mathematics > Mathematical modelling > Inference in Hidden Markov Models: (Springer Series in Statistics)
Inference in Hidden Markov Models: (Springer Series in Statistics)

Inference in Hidden Markov Models: (Springer Series in Statistics)


     0     
5
4
3
2
1



Available


X
About the Book

Hidden Markov models have become a widely used class of statistical models with applications in diverse areas such as communications engineering, bioinformatics, finance and many more. This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statistical theory. Topics range from filtering and smoothing of the hidden Markov chain to parameter estimation, Bayesian methods and estimation of the number of states. In a unified way the book covers both models with finite state spaces, which allow for exact algorithms for filtering, estimation etc. and models with continuous state spaces (also called state-space models) requiring approximate simulation-based algorithms that are also described in detail. Simulation in hidden Markov models is addressed in five different chapters that cover both Markov chain Monte Carlo and sequential Monte Carlo approaches. Many examples illustrate the algorithms and theory. The book also carefully treats Gaussian linear state-space models and their extensions and it contains a chapter on general Markov chain theory and probabilistic aspects of hidden Markov models. This volume will suit anybody with an interest in inference for stochastic processes, and it will be useful for researchers and practitioners in areas such as statistics, signal processing, communications engineering, control theory, econometrics, finance and more. The algorithmic parts of the book do not require an advanced mathematical background, while the more theoretical parts require knowledge of probability theory at the measure-theoretical level.

Table of Contents:
Main Definitions and Notations.- Main Definitions and Notations.- State Inference.- Filtering and Smoothing Recursions.- Advanced Topics in Smoothing.- Applications of Smoothing.- Monte Carlo Methods.- Sequential Monte Carlo Methods.- Advanced Topics in Sequential Monte Carlo.- Analysis of Sequential Monte Carlo Methods.- Parameter Inference.- Maximum Likelihood Inference, Part I: Optimization Through Exact Smoothing.- Maximum Likelihood Inference, Part II: Monte Carlo Optimization.- Statistical Properties of the Maximum Likelihood Estimator.- Fully Bayesian Approaches.- Background and Complements.- Elements of Markov Chain Theory.- An Information-Theoretic Perspective on Order Estimation.

Review :
From the reviews: "By providing an overall survey of results obtained so far in a very readable manner, and also presenting some new ideas, this well-written book will appeal to academic researchers in the field of HMMs, with PhD students working on related topics included. It will also appeal to practitioners and researchers from other fields by guiding them through the computational steps needed for making inference HMMs and/or by providing them with the relevant underlying statistical theory. In the reviewer's opinion this book will shortly become a reference work in its field." MathSciNet "This monograph is a valuable resource. It provides a good literature review, an excellent account of the state of the art research on the necessary theory and algorithms, and ample illustrations of numerous applications of HMM. It goes much beyond the earlier resources on HMM...I anticipate this work to serve well many Technometrics readers in the coming years." Haikady N. Nagaraja for Technometrics, November 2006 "This monograph is an attempt to present a reasonably complete up-to-date picture of the field of Hidden Markov Models (HMM) that is self-contained from a theoretical point of view and self sufficient from a methodological point of view. … The book is written for academic researchers in the field of HMMs, and also for practitioners and researchers from other fields. … all the theory is illustrated with relevant running examples. This voluminous book has indeed the potential to become a standard text on HMM." (R. Schlittgen, Zentralblatt MATH, Vol. 1080, 2006) "Providing an overall survey of results obtained so far in a very readable manner … this well-written book will appeal to academic researchers in the field of HMMs, with PhD students working on related topics included. It will also appeal to practitioners and researchers from other fields by guiding them through the computational steps neededfor making interference on HMMs and/or by providing them with the relevant underlying statistical theory. In the reviewer’s opinion this book will shortly become a reference work in its field." (M. Iosifescu, Mathematical Reviews, Issue 2006 e) "The authors describe Hidden Markov Models (HMMs) as ‘one of the most successful statistical modelling ideas … in the last forty years.’ The book considers both finite and infinite sample spaces. … Illustrative examples … recur throughout the book. … This fascinating book offers new insights into the theory and application of HMMs, and in addition it is a useful source of reference for the wide range of topics considered." (B. J. T. Morgan, Short Book Reviews, Vol. 26 (2), 2006) "In Inference in Hidden Markov Models, Cappé et al. present the current state of the art in HMMs in an emminently readable, thorough, and useful way. This is a very well-written book … . The writing is clear and concise. … the book will appeal to academic researchers in the field of HMMs, in particular PhD students working on related topics, by summing up the results obtained so far and presenting some new ideas … ." (Robert Shearer, Interfaces, Vol. 37 (2), 2007)


Best Sellers


Product Details
  • ISBN-13: 9780387402642
  • Publisher: Springer-Verlag New York Inc.
  • Publisher Imprint: Springer-Verlag New York Inc.
  • Height: 235 mm
  • No of Pages: 653
  • Returnable: Y
  • Width: 155 mm
  • ISBN-10: 0387402640
  • Publisher Date: 04 Aug 2005
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Series Title: Springer Series in Statistics


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Inference in Hidden Markov Models: (Springer Series in Statistics)
Springer-Verlag New York Inc. -
Inference in Hidden Markov Models: (Springer Series in Statistics)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Inference in Hidden Markov Models: (Springer Series in Statistics)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!