Statistical Rethinking
Home > Mathematics and Science Textbooks > Mathematics > Probability and statistics > Statistical Rethinking: A Bayesian Course with Examples in R and STAN(Chapman & Hall/CRC Texts in Statistical Science)
Statistical Rethinking: A Bayesian Course with Examples in R and STAN(Chapman & Hall/CRC Texts in Statistical Science)

Statistical Rethinking: A Bayesian Course with Examples in R and STAN(Chapman & Hall/CRC Texts in Statistical Science)


     0     
5
4
3
2
1



International Edition


X
About the Book

Winner of the 2024 De Groot Prize awarded by the International Society for Bayesian Analysis (ISBA) Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds your knowledge of and confidence in making inferences from data. Reflecting the need for scripting in today's model-based statistics, the book pushes you to perform step-by-step calculations that are usually automated. This unique computational approach ensures that you understand enough of the details to make reasonable choices and interpretations in your own modeling work. The text presents causal inference and generalized linear multilevel models from a simple Bayesian perspective that builds on information theory and maximum entropy. The core material ranges from the basics of regression to advanced multilevel models. It also presents measurement error, missing data, and Gaussian process models for spatial and phylogenetic confounding. The second edition emphasizes the directed acyclic graph (DAG) approach to causal inference, integrating DAGs into many examples. The new edition also contains new material on the design of prior distributions, splines, ordered categorical predictors, social relations models, cross-validation, importance sampling, instrumental variables, and Hamiltonian Monte Carlo. It ends with an entirely new chapter that goes beyond generalized linear modeling, showing how domain-specific scientific models can be built into statistical analyses. Features Integrates working code into the main text. Illustrates concepts through worked data analysis examples. Emphasizes understanding assumptions and how assumptions are reflected in code. Offers more detailed explanations of the mathematics in optional sections. Presents examples of using the dagitty R package to analyze causal graphs. Provides the rethinking R package on the author's website and on GitHub.

Table of Contents:
1. The Golem of Prague. 2. Small Worlds and Large Worlds. Chapter 3. Sampling the Imaginary. 4. Geocentric Models. 5. The Many Variables & The Spurious Waffles. 6. The Haunted DAG & The Causal Terror. 7. Ulysses’ Compass. 8. Conditional Manatees. 8. Conditional Manatees. 9. Markov Chain Monte Carlo. 10. Big Entropy and the Generalized Linear Model. 11. God Spiked the Integers. 12. Monsters and Mixtures. 13. Models With Memory. 14. Adventures in Covariance. 15. Missing Data and Other Opportunities. 16. Generalized Linear Madness. 17. Horoscopes.

About the Author :
Richard McElreath studies human evolutionary ecology and is a Director at the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany. He has published extensively on the mathematical theory and statistical analysis of social behavior, including his first book (with Robert Boyd), Mathematical Models of Social Evolution.

Review :
"The first edition (and this second edition) of *Statistical Rethinking* beautifully outlines the key steps in the statistical analysis cycle, starting from formulating the research question. I find that many statistics textbooks omit the issue of problem formulation and either jump into data acquisition or further into analysis after the fact. McElreath has created a fantastic text for students of applied statistics to not only learn about the Bayesian paradigm, but also to gain a deep appreciation for the statistical thought process. I also found that many students appreciated McElreath’s engaging writing style and humor, and personally found the infusion of humor quite refreshing." - Adam Loy, Carleton College "(The chapter) ‘Generalized Linear Madness’ represents another great chapter of an even better edition of an already awesome textbook." - Benjamin K. Goodrich, Columbia University "(Chapter 16) is a worthy concluding chapter to a masterful book. Eminently readable and enjoyable. Brimful of small thought-provoking bits which may inspire deeper studies, but first and foremost a window on the trial and error process involved in building a statistical model or rather, indeed, any scientific theory." - Josep Fortiana Gregori, University of Barcelona "I do regard the manuscript as technically correct, clearly written, and at an appropriate level of difficulty. The technical approaches and the R codes of the book are perfect for our students. They can learn concepts of Bayesian models, data analysis, and model validation methods through using the R codes. The codes help students to have better understanding of the models and data analysis process." - Nguyet Nguyen, Youngstown State University "As a textbook it successfully brings the statistician’s toolbox to a wider audience with an accessible style and good humour. It should be recommended to statistics students, both old and new." - Nathan Green, Journal of the Royal Statistical Society, 2021, https://doi.org/10.1111/rssa.12755 "In conclusion, Statistical Rethinking frames usual methods and tools taught in graduate statistical courses into a different way to encourage the reader to understand the details and appreciate the underlying assumptions. The accompanying R package offers example codes for some interesting problems that are not available in standard library or other popular packages. This book can be used as a supplement to a graduate course or it can be used by practitioners wanting to brush up their knowledge with better understanding of statistical techniques." - Abhirup Mallik in Technometrics, August 2021 "The first edition (and this second edition) of *Statistical Rethinking* beautifully outlines the key steps in the statistical analysis cycle, starting from formulating the research question. I find that many statistics textbooks omit the issue of problem formulation and either jump into data acquisition or further into analysis after the fact. McElreath has created a fantastic text for students of applied statistics to not only learn about the Bayesian paradigm, but also to gain a deep appreciation for the statistical thought process. I also found that many students appreciated McElreath’s engaging writing style and humor, and personally found the infusion of humor quite refreshing." ~Adam Loy, Carleton College "(The chapter) ‘Generalized Linear Madness’ represents another great chapter of an even better edition of an already awesome textbook." ~Benjamin K. Goodrich, Columbia University "(Chapter 16) is a worthy concluding chapter to a masterful book. Eminently readable and enjoyable. Brimful of small thought-provoking bits which may inspire deeper studies, but first and foremost a window on the trial and error process involved in building a statistical model or rather, indeed, any scientific theory." ~Josep Fortiana Gregori, University of Barcelona "I do regard the manuscript as technically correct, clearly written, and at an appropriate level of difficulty. The technical approaches and the R codes of the book are perfect for our students. They can learn concepts of Bayesian models, data analysis, and model validation methods through using the R codes. The codes help students to have better understanding of the models and data analysis process." ~Nguyet Nguyen, Youngstown State University "In conclusion, Statistical Rethinking frames usual methods and tools taught in graduate statistical courses into a different way to encourage the reader to understand the details and appreciate the underlying assumptions. The accompanying R package offers example codes for some interesting problems that are not available in standard library or other popular packages. This book can be used as a supplement to a graduate course or it can be used by practitioners wanting to brush up their knowledge with better understanding of statistical techniques." ~Abhirup Mallik in Technometrics, August 2021 "As a textbook it successfully brings the statistician’s toolbox to a wider audience with an accessible style and good humour. It should be recommended to statistics students, both old and new." ~ Nathan Green, Journal of the Royal Statistical Society, 2021


Best Sellers


Product Details
  • ISBN-13: 9780367139919
  • Publisher: Taylor & Francis Ltd
  • Binding: Hardback
  • Language: English
  • Series Title: Chapman & Hall/CRC Texts in Statistical Science
  • Weight: 1432 gr
  • ISBN-10: 036713991X
  • Publisher Date: 16 Mar 2020
  • Height: 254 mm
  • No of Pages: 594
  • Sub Title: A Bayesian Course with Examples in R and STAN
  • Width: 178 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Statistical Rethinking: A Bayesian Course with Examples in R and STAN(Chapman & Hall/CRC Texts in Statistical Science)
Taylor & Francis Ltd -
Statistical Rethinking: A Bayesian Course with Examples in R and STAN(Chapman & Hall/CRC Texts in Statistical Science)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Statistical Rethinking: A Bayesian Course with Examples in R and STAN(Chapman & Hall/CRC Texts in Statistical Science)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!