Monitoring and Control of Electrical Power Systems using Machine Learning Techniques
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Energy technology and engineering > Energy, power generation, distribution and storage > Monitoring and Control of Electrical Power Systems using Machine Learning Techniques
Monitoring and Control of Electrical Power Systems using Machine Learning Techniques

Monitoring and Control of Electrical Power Systems using Machine Learning Techniques


     0     
5
4
3
2
1



International Edition


X
About the Book

Monitoring and Control of Electrical Power Systems using Machine Learning Techniques bridges the gap between advanced machine learning techniques and their application in the control and monitoring of electrical power systems, particularly relevant for heavily distributed energy systems and real-time application. The book reviews key applications of deep learning, spatio-temporal, and advanced signal processing methods for monitoring power quality. This reference introduces guiding principles for the monitoring and control of power quality disturbances arising from integration of power electronic devices and discusses monitoring and control of electrical power systems using benchmark test systems for the creation of bespoke advanced data analytic algorithms.

Table of Contents:
1. Introduction to Monitoring and control of electrical power systems using machine learning techniques 2. Power quality disturbances in electrical power systems 3. Monitoring and control in electrical power systems 4. Benchmark Test Systems for the Validation of Power Quality Disturbance Studies 5. Advanced signal processing methods for monitoring and control of Electrical Power Systems 6. Monitoring of Electrical Power Systems based on Automatic Learning methods 7. Spatio-Temporal Data-Driving Methods for Monitoring of Electrical Power Systems 8. Data Analytic Applications for Monitoring of Electrical Power Systems 9. Trends in Monitoring and Control of Power Quality in Electrical Power Systems 10. Didactic examples of algorithm implementation

About the Author :
Emilio Barocio Espejo received the Ph.D. degree from CINVESTAV, Guadalajara, in 2003, in electrical engineering. He is a full Professor at the Graduate Program forElectrical Engineering and Data Science of the University of Guadalajara. Dr. Barocio was a recipient of the Arturo Rosenblueth Award for the best Ph.D. thesis on Science and Technology of México in 2003. He was distinguished with the Marie-Curie Incoming International Fellowship at Imperial College London in 2013. He was also a recipient of the IEEE Power and Energy Society and the IEEE Power System Dynamic Performance Committee Prize Paper Awards, both in 2018. His research interests focus on the integration of data analytics in power system monitoring. In the last 10 years his main aims have been to aid the development and application of methods drawing from spatio-temporal data driven, machine learning, data mining and meta heuristic optimization. Felix Rafael Segundo Sevilla received his PhD degree from Imperial College London, United Kingdom in 2013. From January 2013 to July 2014, Dr Segundo was a postdoctoral research fellow at the KTH Royal Institute of Technology in Stockholm, Sweden. Since 2014, he has been a Research Associate in the Zurich University of Applied Science ZHAW, Switzerland. Dr Segundo was awarded with an Ambizione Energy grant from the Swiss National Science Foundation (SNSF) to conduct his own research project entitled “Stability Assessment of Forthcoming Power Networks with Massive Integration of Renewable Energy Sources” for the period 2018-2021. Dr Segundo is a Senior Member of the IEEE, chair of the annual international workshop DynPOWER and chair of the IEEE task force " Application of Big Data Analytics on Transmission System Dynamic Security Assessment". Petr Korba received his Dr.-Ing. degree from the University of Duisburg, Germany in 1999. He worked for more than 10 years as a principal scientist at ABB Corporate Research. He became a professor of electric power systems at the ZHAW and deputy head of the institute of energy systems in 2012 and 2015, respectively. Dr Korba has published over 100 articles in international journals and at international conferences in the field of automatic control and electric power systems. He has authored and co-authored over 100 US and European patents and patent applications and was nominated for the Best European Patent Award in 2011 for his achievements in the wide-area monitoring and control of electric power systems.


Best Sellers


Product Details
  • ISBN-13: 9780323999045
  • Publisher: Elsevier - Health Sciences Division
  • Publisher Imprint: Elsevier - Health Sciences Division
  • Height: 229 mm
  • No of Pages: 352
  • Width: 152 mm
  • ISBN-10: 0323999042
  • Publisher Date: 23 Jan 2023
  • Binding: Paperback
  • Language: English
  • Weight: 634 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Monitoring and Control of Electrical Power Systems using Machine Learning Techniques
Elsevier - Health Sciences Division -
Monitoring and Control of Electrical Power Systems using Machine Learning Techniques
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Monitoring and Control of Electrical Power Systems using Machine Learning Techniques

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!