Buy Handbook of Silicon Based MEMS Materials and Technologies
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Mechanical engineering and materials > Materials science > Handbook of Silicon Based MEMS Materials and Technologies: (Micro & Nano Technologies)
Handbook of Silicon Based MEMS Materials and Technologies: (Micro & Nano Technologies)

Handbook of Silicon Based MEMS Materials and Technologies: (Micro & Nano Technologies)


     0     
5
4
3
2
1



Available


X
About the Book

The Handbook of Silicon Based MEMS Materials and Technologies, Second Edition, is a comprehensive guide to MEMS materials, technologies, and manufacturing that examines the state-of-the-art with a particular emphasis on silicon as the most important starting material used in MEMS. The book explains the fundamentals, properties (mechanical, electrostatic, optical, etc.), materials selection, preparation, manufacturing, processing, system integration, measurement, and materials characterization techniques, sensors, and multi-scale modeling methods of MEMS structures, silicon crystals, and wafers, also covering micromachining technologies in MEMS and encapsulation of MEMS components. Furthermore, it provides vital packaging technologies and process knowledge for silicon direct bonding, anodic bonding, glass frit bonding, and related techniques, shows how to protect devices from the environment, and provides tactics to decrease package size for a dramatic reduction in costs.

Table of Contents:
Impact of Silicon MEMS Section I: Silicon as MEMS Material 1. Properties of Silicon 2. Czochralski Growth of SiliconCrystals 3. Properties of Silicon Crystals 4. Silicon Wafers: Preparation and Properties 5. Epi Wafers: Preparation and Properties 6. Thin Films on Silicon 6.1 Thin films on Silicon: Silicon dioxide 6.2 Thin films on Silicon: Silicon nitride 6.3 Thin Films on Silicon: Poly-Si and SiGe 6.4 Thin films on Silicon: AlD 6.5 Thin Films on Silicon: Piezofilms 6.6 Thin Films on Silicon: Metal films 7. Thick-Film SOI Wafers: Preparation and Properties Section II: Modeling in MEMS  8. Multiscale Modeling Methods 9. Mechanical Properties of Silicon Microstuctures 10. Electrostatic and RF-properties of MEMS Structures 11. Optical Modeling of MEMS 12. Simulations of Etching Processes for MEMS Fabrication 13. Gas Damping in Vibrating MEMS Structures Section III: Measuring MEMS  14. Introduction to Measuring MEMS 15. Silicon Wafer and Thin Film Measurements 16. Optical Measurement of Static and Dynamic Displacement in MEMS 17. MEMS Residual Stress Characterization:  Methodology and Perspective 18. Strength of Bonded Interfaces 19. Oxygen and Bulk Microdefects in Silicon  Section IV: Micromachining Technologies in MEMS 20. MEMS Lithography 21. Deep Reactive Ion Etching 22. Wet Etching of Silicon 23. Porous Silicon Based MEMS 24. Surface Micromachining 25. Vapour Phase Etch Processes for Silicon MEMS 26. 2 3-D Printing for MEMS 27. Microfluidics and Biomems in Silicon Section V: Encapsulation of MEMS Components 28. Introduction to encapsulation of MEMS 29. Silicon Direct Bonding 30. Anodic Bonding 31. Glass Frit Bonding 32. Metallic Alloy Seal Bonding 33. Bonding of CMOS Processed Wafers 34. Wafer Bonding: Tools and Processes 35. Encapsulation by Film Deposition 36. Dicing of MEMS Devices 37. 3D Integration of MEMS 38. Via Technologies for MEMS 39. Outgassing and Gettering 40. Hermeticity Tests 41. MEMS Reliability 42. Appendix 1: Common Abbreviations and Acronyms 43. Appendix 2: Nanoindentation Characterization of Silicon and other MEMS Materials

About the Author :
Markku Tilli obtained a degree in Materials Science (Physical Metallurgy) at Helsinki University of Technology (HUT) in 1974. Until 1980 he had various research and teaching positions at HUT specializing in crystal growth technologies. From 1981 to 1984 he managed process research and development in Silicon project at HUT silicon wafer manufacturing pilot plant. Since 1985 he has had various managing positions at Okmetic in research, development and customer support areas, and held a position of Senior Vice President, Research until his retirement in 2018. His MEMS related activities started in 1982 when he developed a process to make double side polished silicon wafers for bulk micromachined sensors. Since then he has developed advanced new silicon wafer types for MEMS, including special epitaxial wafers, SOI and SOI wafers with buried cavities. His publication topics include oxygen precipitation in silicon, silicon crystal growth, wafer cleaning as well as silicon wafer manufacturing technologies and applications in MEMS. He is member of the Technology Academy of Finland and has received the honorary degree of Doctor of Science in Engineering from Aalto University. Dr. Mervi Paulasto-Kröckel is professor at Aalto University School of Electrical Engineering in Finland. She studied materials science and semiconductor technology in Helsinki University of Technology, and gradudated as MSc Tech in 1990. She continued her studies in the Technical Universities of Aachen (RWTH Aachen) and Helsinki and attained her doctoral degree in 1995. After a 2-years post-doctoral appointment at the Joint Research Centre of European Commission in the Netherlands, her professional career continued in the electronics industry. She was a Staff Principal Engineer at Motorola Semiconductor Products Sector in Munich. In 2004 Paulasto-Kröckel joined Infineon Technologies where she was the Director Package Development responsible for semiconductor assembly and interconnect development for automotive products worldwide. At the end of 2018 Dr. Paulasto-Kröckel became a professor at Helsinki University of Technology, which is now called Aalto University after a merger with two other leading universities in the Helsinki area. Her current research focus is on advanced materials and interconnect technologies for MEMS/NEMS and power electronics, as well as multi-material assemblies behavior under different loads and their characteristic failure mechanisms. Her group has extensive experience in studying interactions and interfacial reactions between dissimilar materials, such as different oxide and nitride materials, metals and semiconductors. The group has developed a combined methodology approach to solve multi-materials compatibility issues in microelectronics and microsystems. Prof. Paulasto-Kröckel has over 110 international publications in the fields of microelectronics packaging and interfacial compatibility of dissimilar materials. She is IEEE EPS Distinguished Lecturer and a member of the Finnish Academy of Technical Sciences. Teruaki Motooka received PhD degree in 1981 in Applied Physics from Kyushu University. He was a research scientist in the Central Research Laboratory, Hitachi Ltd. for 1971-1984, a visiting research assistant professor at University of Illinois at Urbana-Champaign, USA for 1984-1988, an associate professor in the Institute of Applied Physics at University of Tsukuba, Japan for 1988-1993, and became a full professor at Kyushu University in 1993. He retired from Kyushu University in 2010. He has published more than 150 scientific papers on various international journals and these papers have been cited more than 2000 times. Veikko Lindroos is Professor Emeritus, Physical Metallurgy and Materials Science, Aalto University, Finland. His research covers a broad spectrum of materials science and technology, such as metallic materials, silicon technology and MEMS materials magnetic, electronic and composite materials as well as shape memory effect and materials.


Best Sellers


Product Details
  • ISBN-13: 9780323299657
  • Publisher: William Andrew Publishing
  • Publisher Imprint: William Andrew Publishing
  • Height: 276 mm
  • No of Pages: 826
  • Weight: 2451 gr
  • ISBN-10: 0323299652
  • Publisher Date: 30 Oct 2015
  • Binding: Hardback
  • Language: English
  • Series Title: Micro & Nano Technologies
  • Width: 216 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Handbook of Silicon Based MEMS Materials and Technologies: (Micro & Nano Technologies)
William Andrew Publishing -
Handbook of Silicon Based MEMS Materials and Technologies: (Micro & Nano Technologies)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Handbook of Silicon Based MEMS Materials and Technologies: (Micro & Nano Technologies)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!