Buy Engineering Methods for Robust Product Design by William Y. Fowlkes
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Science, Technology & Agriculture > Mechanical engineering and materials > Production and industrial engineering > Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development
Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development

Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

"I believe this book will help a great deal to clarify misconceptions about Dr. Genichi Taguchi's approach to robust design, such as why dynamic signal-to-noise ratio is used and the role of orthogonal arrays in parameter design and tolerance design. The authors understand the intent of robust design is to prevent fire instead of becoming better fire fighters!"N Shin Taguchi President, American Supplier InstituteWith practical techniques, real-life examples, and special software, this hands-on book/disk package teaches practicing engineers and students how to use Taguchi Methods and other robust design techniques that focus on engineering processes in optimizing technology and products for better performance under the imperfect conditions of the real world.The unique WinRobust Lite software included with the book, together with a number of practice problems, enables you to conduct and analyze Taguchi experiments by simplifying the tedious process of performing the many necessary computations.The book contains complete information on the process of engineering robust products that are insensitive to sources of variability in manufacturing and customer use. You will find detailed instructions for planning, designing, conducting, and analyzing the experiments that are used to optimize a product's performance under a variety of "stressed" conditions. An entire section focuses on designing products that achieve additivity, the property that reduces negative interactions. In addition, the book offers a systematic method for optimizing cost, quality, and cycle time. It even discusses the relationship of robust design to such other quality processes as Quality Function Deployment and Six Sigma.Numerous case studies, taken from the authors' extensive practical experience, illustrate how robust design theories and techniques actually work in the real world of product engineering. With the techniques described in this book as well as the WinRobust Lite software, you will be better able to design robust products that are high-quality, durable, and able to perform well in the marketplace.

Table of Contents:
Foreword. Preface. 1. Introduction to Quality Engineering. An Overview. The Concept of Noise in Robust Design. Product Reliability and Quality Engineering. What Is Robustness? What Is Quality? On-Target Engineering. How Is Quality Measured? The Phases of Quality Engineering in Product Commercialization. Off-Line Quality Engineering. On-Line Quality Engineering. The Link between Sir Ronald Fisher and Dr. Genichi Taguchi. A Brief History - The Taguchi Method of Quality Engineering. Concluding Remarks. Exercises for Chapter 1. I. QUALITY ENGINEERING METRICS. 2. Introductory Data Analysis for Robust Design. The Nature of Data. Graphical Methods of Data Analysis. Quantitative Methods of Data Analysis. An Introduction to the Two-Step Optimization Process. Summary. Exercises for Chapter 2. 3. The Quality Loss Function. The Nature of Quality. Relating Performance Distributions to Quality. The Step Function: An Inadequate Description of Quality. The Customer Tolerance. The Quality Loss Function: A Better Description of Quality. The Quality Loss Coefficient. An Example of the Quality Loss Function. The Types of Quality Loss Functions. Loss Function Case Study. Summary. Exercises for Chapter 3. 4. The Signal-to-Noise Ratio. Properties of the S/N Ratio. Derivation of the S/N Ratio. Defining the Signal-to-Noise Ratio from the Mean Square Derivation. Identifying the Scaling Factor. Summary. Exercises for Chapter 4. 5. The Static Signal-to-Noise Ratios. Introduction, Static vs. Dynamic Analysis. The Smaller-the-Better Type Signal-to-Noise Ratio. The Larger-the-Better S/N Ratio. The Operating Window: A Combination of STB and LTB. A Signal-to-Noise Ratio for Probability. The Nominal-the-Best Signal-to-Noise Ratios. Two-Step Optimization. A Comparative Analysis of Type I NTB and Type II NTB. A Note on Notation. Summary. Exercises for Chapter 5. 6. The Dynamic Signal-to-Noise Methods and Metrics. Introduction. The Zero-Point Proportional Case. The Reference-Point Proportional Case. Nonlinear Dynamic Problems. The Double-Dynamic Signal-to-Noise Ratio. Summary. Exercises for Chapter 6. II. PARAMETER DESIGN. 7. Introduction to Designed Experiments. Experimental Approaches. The Analysis of Means (ANOM). Degrees of Freedom. Full Factorial Arrays. Fractional Factorial Orthogonal Arrays. Summary of Chapter 7. Exercises for Chapter 7. 8. Selection of the Quality Characteristics. Introduction. Engineering Analysis in the Planning Stage. The Ideal Function of the Design. Guidelines for Choosing the Quality Characteristic. Summary: The P-diagram. Exercises for Chapter 8. 9. The Selection and Testing of Noise Factors. Introduction. The Role of Noise Factor - Control Factor Interactions. Experimental Error and Induced Noise. Noise Factors. Choosing the Noise Factors. The Noise Factor Experiment. Analysis of Means for Noise Experiments. Examples. Other Approaches to Studying Noise Factors. Case Study: Noise Experiment on a Film Feeding Device. Summary of Chapter 9. Exercises for Chapter 9. 10. The Selection of Control Factors. Introduction. Selecting Control Factors to Improve Tunability and Robustness. Selecting and Grouping Engineering Parameters to Promote Additivity. Sliding Levels for Control Factors. Example: The Catapult. Example: The Paper Gyrocopter. Summary: The P-diagram. Exercises for Chapter 10. 11. The Parameter Optimization Experiment. Introduction. Dr. Taguchi's Parameter Design Approach. Layout of the Static Experiment. Layout of the Dynamic Experiment. Choosing the Noise Factor Treatment. Choosing the S/N Ratio. Summary of Chapter 11. Exercises for Chapter 11. 12. The Analysis and Verification of the Parameter Optimization Experiment. Introduction. The Data Analysis Procedure. An Example of the Analysis of the Parameter Optimization Experiment. Estimating the Effects of Each Factor Using ANOM. Identifying the Optimum Control Factor Set Points. The Two-Step Optimization Process. The Additive Model. The Predictive Equation. The Verification Tests. Summary: Succeeding at Parameter Design. Exercises for Chapter 12. 13. Examples of Parameter Design. The Ice Water Experiment: Smaller-the-Better. The Gyrocopter Experiment: Dynamic Larger-the-Better. The Catapult Experiment. Conclusion. Exercises for Chapter 13. 14. Parameter Design Case Studies. Introduction. Paper Handling - An Operating Window Example with Two Signal Factors. Improvement of a Capstan Roller Printer Registration. Enhancement of a Camera Zoom Shutter Design. Summary. III. ADVANCED TOPICS. 15. Modifying Orthogonal Arrays. Introduction. Downgrading a Column. Upgrading a Column. Compound Factors. Summary of Chapter 15. Exercises for Chapter 15. 16. Working with Interactions. The Nature of Interactions in Robust Design. Interactions Defined. How Interactions Are Measured. Degrees of Freedom for Interactions. Setting Up the Experiment When Interactions Are Included. Summary of Chapter 16. Exercises for Chapter 16. 17. Analysis of Variance (ANOVA). Introduction. An Example of the ANOVA Process. Degrees of Freedom. Error Variance and Pooling. Error Variance and Replication. Error Variance and Utilizing Empty Columns. The F-Test. WinRobust Examples. Summary. Exercises for Chapter 17. 18. The Relationship of Robust Design to Other Quality Processes. Quality Function Deployment (QFD) and Robust Design. Design of Experiments and Robust Design. Six Sigma Quality Process and Robust Design. Summary. Appendix A Glossary. Appendix B Quick Start Guide for WinRobust Lite. Appendix C Orthogonal Arrays. Appendix D Bibliography. Index. 0201633671T04062001

About the Author :
William Y. Fowlkes, winner of the prestigious Taguchi Award for his work at Eastman Kodak, is experienced both in using Taguchi methods as well as teaching them. He teaches a course on robust design at the Rochester Institute of Technology, has created a video tape and tele-course on the subject that is used at General Motors, and was instrumental in creating the training materials on robust design that continue to be used at Eastman Kodak. Clyde "Skip" Creveling is the president and founder of Product Development Systems & Solutions Inc. (PDSS) (http://www.pdssinc.com). Since PDSS' founding in 2002, Mr. Creveling has led Design for Six Sigma (DFSS) initiatives at Motorola, Carrier Corporation, StorageTek, Cummins Engine, BD, Mine Safety Appliances, Callaway Golf, and a major pharmaceutical company. Prior to founding PDSS, Mr. Creveling was an independent consultant, DFSS Product Manager, and DFSS Project Manager with Sigma Breakthrough Technologies Inc. (SBTI). During his tenure at SBTI he served as the DFSS Project Manager for 3M, Samsung SDI, Sequa Corp., and Universal Instruments. Mr. Creveling was employed by Eastman Kodak for 17 years as a product development engineer within the Office Imaging Division. He also spent 18 months as a systems engineer for Heidelberg Digital as a member of the System Engineering Group. During his career at Kodak and Heidelberg he worked in R&D, Product Development/Design/System Engineering, and Manufacturing. Mr. Creveling has five U.S. patents. He was an assistant professor at Rochester Institute of Technology for four years, developing and teaching undergraduate and graduate courses in mechanical engineering design, product and production system development, concept design, robust design, and tolerance design. Mr. Creveling is also a certified expert in Taguchi Methods. He has lectured, conducted training, and consulted on product development process improvement, design for Six Sigma methods, technology development for Six Sigma, critical parameter management, robust design, and tolerance design theory and applications in numerous U.S, European, and Asian locations. He has been a guest lecturer at MIT, where he assisted in the development of a graduate course in robust design for the System Design and Management program. Mr. Creveling is the author or coauthor of several books, including Six Sigma for Technical Processes, Six Sigma for Marketing Processes, Design for Six Sigma in Technology and Product Development, Tolerance Design, and Engineering Methods for Robust Product Design. He is the editorial advisor for Prentice Hall's Six Sigma for Innovation and Growth Series. Mr. Creveling holds a B.S. in mechanical engineering technology and an M.S. from Rochester Institute of Technology.


Best Sellers


Product Details
  • ISBN-13: 9780201633672
  • Publisher: Pearson Education (US)
  • Publisher Imprint: Prentice Hall
  • Height: 198 mm
  • No of Pages: 432
  • Sub Title: Using Taguchi Methods in Technology and Product Development
  • Width: 244 mm
  • ISBN-10: 0201633671
  • Publisher Date: 28 Sep 1995
  • Binding: SA
  • Language: English
  • Spine Width: 35 mm
  • Weight: 966 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development
Pearson Education (US) -
Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!