Atomic Pair Distribution Function Analysis
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Physics > Materials / States of matter > Condensed matter physics > Atomic Pair Distribution Function Analysis: A Primer(22 International Union of Crystallography Texts on Crystallography)
Atomic Pair Distribution Function Analysis: A Primer(22 International Union of Crystallography Texts on Crystallography)

Atomic Pair Distribution Function Analysis: A Primer(22 International Union of Crystallography Texts on Crystallography)


     0     
5
4
3
2
1



Available


X
About the Book

Since the early 1990s the atomic pair distribution function (PDF) analysis of powder diffraction data has undergone something of a revolution in its ability to do just that: yield important structural information beyond the average crystal structure of a material. With the advent of advanced sources, computing and algorithms, it is now useful for studying the structure of nanocrystals, clusters and molecules in solution or otherwise disordered in space, nanoporous materials and things intercalated into them, and to look for local distortions and defects in crystals. It can be used in a time-resolved way to study structural changes taking place during synthesis and in operating devices, and to map heterogeneous systems. Although the experiments are somewhat straightforward, there can be a gap in knowledge when trying to use PDF to extract structural information by modelling. This book addresses this gap and guides the reader through a series of real life worked examples that gradually increase in complexity so the reader can have the independence and confidence to apply PDF methods to their own research and answer their own scientific questions. The book is intended for graduate students and other research scientists who are new to PDF and want to use the methods but are unsure how to take the next steps to get started.

Table of Contents:
1: Introduction and review 1.1 What this book is not 1.2 What this book is 1.3 Why PDF? 1.4 Software 2: PDF Primer 2.1 Introduction 2.2 X-ray scattering from materials 2.3 Obtaining the PDF from x-ray total scattering data 2.4 The pair distribution function 2.5 Extracting structural information from the PDF 2.6 Measurement of total scattering data 2.7 It is time to start modelling! 3: PDF modelling of simple crystal structures: Bulk Ni and Pt nanoparticles 3.1 Introduction and overview 3.2 The question 3.3 The result 3.4 The experiment 3.5 What next? 3.6 Wait, what? How do I do that? 3.7 Problems 3.8 Solution 3.9 Diffpy-CMI solution 4: Getting the PDF 4.1 Introduction and overview 4.2 The question 4.3 The result 4.4 The experiment 4.5 What next? 4.6 Wait, what? How do I do that? 4.7 results 4.8 problems 4.9 solution 5: Quantification of sample phase composition: physical mixtures of Si and Ni 5.1 Introduction and overview 5.2 The question 5.3 The result 5.4 The experiment 5.5 What next? 5.6 Wait, what? How do I do that? 5.7 Problems 5.8 Solution 5.9 Diffpy-CMI Solution 6: More advanced crystal structure modeling: the room-temperature structure of crystalline Ba0.7K0.3(Zn0.85Mn0.15)2As2 6.1 Introduction and overview 6.2 The question 6.3 The result 6.4 The experiment 6.5 What next? 6.6 Wait, what? How do I do that? 6.7 Problems 6.8 Solution 6.9 Diffpy-CMI Solution 7: Investigating the tetragonal-to-orthorhombic phase transition in SrFe2As2 7.1 Introduction and overview 7.2 The question 7.3 The result 7.4 The experiment 7.5 What next? 7.6 Wait, what? How do I do that? 7.7 Problems 7.8 Solution 7.9 Diffpy-CMI Solution 8: Simple modeling of nanoparticles: Size-dependent structure, defects and morphology of quantum dot nanoparticles 8.1 Introduction and overview 8.2 The question 8.3 The result 8.4 The experiment 8.5 What next? 8.6 Wait, what? How do I do that? 8.7 Problems 8.8 Solutions 8.9 Diffpy-CMI Solution 9: Local structure in a crystal with short-range ordered lower-symmetry domains: Local iridium dimerization and triclinic distortions in cubic CuIr1.76Cr0.24S4 9.1 Introduction and overview 9.2 The question 9.3 The result 9.4 The experiment 9.5 What next? 9.6 Wait, what? How do I do that? 9.7 Problems 9.8 Solution 9.9 Diffpy-CMI Solution 10: Nano and polycrystalline thin films: Local structure of nanocrystalline TiO2 grown on glass 10.1 Introduction and overview 10.2 The question 10.3 The result 10.4 The experiment 10.5 What next? 10.6 Wait, what? How do I do that? 10.7 Problems 10.8 Solution 10.9 Diffpy-CMI Solution 11: Structure of discrete tetrahedral quantum dots: Atomically precise CdSe tetrahedral nanoclusters 11.1 Introduction and overview 11.2 The question 11.3 The result 11.4 The experiment 11.5 What next? 11.6 Wait, what? How do I do that? 11.7 Problems 11.8 Solution 12: Structure and intercalation environment of disordered layered materials: zirconium phosphonateDSphosphate unconventional MOFs 12.1 Introduction . 12.2 The question 12.3 The result 12.4 The experiment 12.5 What next? 12.6 Wait, what? How do I do that? 12.7 Problems 12.8 Solution 13: Magnetic PDF 13.1 Introduction and overview 13.2 The question 13.3 The result 13.4 The experiment 13.5 What next? 13.6 Wait, what? How do I do that? 13.7 Problems 13.8 Solution 14: Tips and Tricks: PDF measurements 14.1 Introduction and overview 14.2 Basic overview: what are total scattering data? 14.3 What type of radiation should I use? 14.4 Detectors 14.5 Sample geometries 14.6 Samples 14.7 Sample environments 15: More PDF Tips and Tricks 15.1 Introduction 15.2 PXRD or PDF, Q-space or r-space analysis? 15.3 Model-free analysis of PDF 15.4 More options for PDF modelling 15.5 Automated PDF modelling 15.6 Final words 16: Appendix 1: Python 16.1 Introduction 16.2 Installing Python programs 16.3 The terminal and the command prompt 16.4 Python IDE>'s and Jupyter Notebooks 17: Appendix 2: Data processing and integration 17.1 Introduction Bibliography

About the Author :
Professor Billinge has dedicated his life to finding and characterizing local structures, local distortions and hidden symmetries in materials. It all started with an undergrad in Metallurgy and Materials Science at Oxford University, then a PhD at University of Pennsylvania. This led to an interest in the physics of materials and the physics of scattering and a 13 year stint in a Physics and Astronomy Department at Michigan State University. Since 2008 he has been in his current position at Columbia University, with an additional 14 year joint appointment at Brookhaven National Laboratory. He is best known for his contributions to the development of the PDF method, the topic of this book, into a powerful modern materials characterization tool. Kirsten M. Ø. Jensen's undergraduate and PhD studies were both completed at Aarhus University in Denmark, graduating in 2013. She was at this point already very interested in structure/property relations in nanoscale materials, and after her PhD, she joined Prof. Billinge's group at Columbia University for a postdoctoral fellowship. She has been at University of Copenhagen since 2015 where she leads her research group. She is known for her innovative application of x-ray scattering methods, and especially PDF analysis, to problems in nanomaterials chemistry.


Best Sellers


Product Details
  • ISBN-13: 9780198885801
  • Publisher: Oxford University Press
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Spine Width: 20 mm
  • Weight: 682 gr
  • ISBN-10: 0198885806
  • Publisher Date: 23 Nov 2023
  • Height: 254 mm
  • No of Pages: 272
  • Series Title: 22 International Union of Crystallography Texts on Crystallography
  • Sub Title: A Primer
  • Width: 175 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Atomic Pair Distribution Function Analysis: A Primer(22 International Union of Crystallography Texts on Crystallography)
Oxford University Press -
Atomic Pair Distribution Function Analysis: A Primer(22 International Union of Crystallography Texts on Crystallography)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Atomic Pair Distribution Function Analysis: A Primer(22 International Union of Crystallography Texts on Crystallography)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!