Neural Networks for Pattern Recognition
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer science > Artificial intelligence > Pattern recognition > Neural Networks for Pattern Recognition
Neural Networks for Pattern Recognition

Neural Networks for Pattern Recognition


     0     
5
4
3
2
1



International Edition


X
About the Book

This book provides the first comprehensive treatment of feed-forward neural networks from the perspective of statistical pattern recognition. After introducing the basic concepts of pattern recognition, the book describes techniques for modelling probability density functions, and discusses the properties and relative merits of the multi-layer perceptron and radial basis function network models. It also motivates the use of various forms of error functions, and reviews the principal algorithms for error function minimization. As well as providing a detailed discussion of learning and generalization in neural networks, the book also covers the important topics of data processing, feature extraction, and prior knowledge. The book concludes with an extensive treatment of Bayesian techniques and their applications to neural networks.

Table of Contents:
1: Statistical pattern recognition 2: Probability density estimation 3: Single-layer networks 4: The multi-layer perceptron 5: Radial basis functions 6: Error functions 7: Parameter optimization algorithms 8: Pre-processing and feature extraction 9: Learning and generalization 10: Bayesian techniques

Review :
excellent... Bishop is able to achieve a level of depth on these topics which is unparalleled in other neural-net texts.... clear and concise mathematical analysis. Bishop's text [] picks up where Duda and Hart left off, and, luckily does so with the same level of clarity and elegance. Neural Networks for Pattern Recognition is an excellent read, and represents a real contribution to the neural-net community. IEEE Transactions on Neural Networks, May 1997 `this is an excellent book in the specialised area of statistical pattern recognition with statistical neural nets ... a good starting point for new students in those laboratories where research into statistico-neural pattern recognition is being done ... The examples for the reader at the end of this and every chapter are well chosen and will ensure sales as a course textbook ... this is a first-class book for the researcher in statistical pattern recognition.' Times Higher Bishop leads the way through a forest of mathematical minutiae. Readers will emerge with a rigorous statistical grounding in the theory of how to construct and train neural networks in pattern recognition. New Scientist [Bishop] has written a textbook, introducing techniques, relating them to the theory, and explaining their pitfalls. Moreover, a large set of exercises makes it attractive for the teacher to use the book.... should be warmly welcomed by the neural network and pattern recognition communities. Bishop can be recommended to students and engineers in computer science. The Computer Journal, Volume 39, No. 6, 1996 Its sequential organization and end-of chapter exercises make it an ideal mental gymnasium. The author has eschewed biological metaphor and sweeping statements in favour of welcome mathematical rigour. Scientific Computing World `a neural network introduction placed in a pattern recognition context. ...He has written a textbook, introducing techniques, relating them to the theory and explaining their pitfalls. Moreover, a large set of exercises makes it attractive for the teacher to use the book ... should be warmly welcomed by the neural network and pattern recognition communities.' Robert P. W. Duin, IAPR Newsletter Vol. 19 No. 2 April 1997 `This outstanding book contributes remarkably to a better statistical understanding of artificial neural networks. The superior quality of this book is that it presents a comprehensive self-contained survey of feed-forward networks from the point of view of statistical pattern recognition.' Zbl.Math 868


Best Sellers


Product Details
  • ISBN-13: 9780198538646
  • Publisher: Oxford University Press
  • Publisher Imprint: Clarendon Press
  • Height: 234 mm
  • No of Pages: 504
  • Spine Width: 28 mm
  • Width: 156 mm
  • ISBN-10: 0198538642
  • Publisher Date: 23 Nov 1995
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Weight: 751 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Neural Networks for Pattern Recognition
Oxford University Press -
Neural Networks for Pattern Recognition
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Neural Networks for Pattern Recognition

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!