Principles of Nonlinear Optical Spectroscopy
Home > Mathematics and Science Textbooks > Physics > Optical physics > Principles of Nonlinear Optical Spectroscopy
Principles of Nonlinear Optical Spectroscopy

Principles of Nonlinear Optical Spectroscopy


     0     
5
4
3
2
1



International Edition


X
About the Book

This textbook presents a systematic and unifying viewpoint for a wide class of nonlinear spectroscopic techniques in time domain and frequency domain. It is directed towards active researchers in physics, optics, chemistry, and materials science, as well as graduate students who enter this complex and rapidly developing field. Nonlinear optical interactions of laser fields with matter provide powerful spectroscopic tools for the understanding of microscopic interactions and dynamic processes. One of the major obstacles facing researchers in this field, however, is the flood of experimental techniques and terminologies, which create a serious language barrier. The general microscopic correlation function approach to the nonlinear optical response developed in this book is essential for understanding the relationships among different techniques and a comparison of their information content, the design of new measurements, and for a systematic comparison of the optical response of different systems such as dyes in solutions, atoms and molecules in the gas phase, liquids, molecular aggregates and superlatives, and semiconductor nanostructures. The approach is based on formulating the nonlinear response by representing the state of matter by the density matrix and following its evolution on Liouville space. Current active research areas such as femtosecond time-domain techniques, semi-classical and wave-packet dynamics, pulse shaping, pulse locking, exciton confinement, and the interplay of electronic, nuclear and field coherence are emphasized. The material has been developed from the author's highly successful interdisciplinary course at the University of Rochester attended by science and engineering graduate students.

Table of Contents:
1: Introduction 2: Quantum Dynamics in Hilbert Space 3: The Density Operator and Quantum Dynamics in Liouville Space 4: Quantum Electrodynamics, Optical Polarization, and Nonlinear Spectroscopy 5: Nonlinear Response Functions and Optical Susceptibilities 6: The Optical Response Functions of a Multilevel System with Relaxation 7: Semiclassical Simulation of the Optical Response Functions 8: The Cumulant Expansion and the Multimode Brownian Oscillator Model 9: Fluorescence, Spontaneous-Raman and Coherent-Raman Spectroscopy 10: Selective Elimination of Inhomogeneous Broadening; Photon Echoes 11: Resonant Gratings, Pump-Probe, and Hole Burning Spectroscopy 12: Wavepacket Dynamics in Liouville Space; The Wigner Representation 13: Wavepacket Analysis of Nonimpulsive Measurements 14: Off-Resonance Raman Scattering 15: Polarization Spectroscopy; Birefringence and Dichroism 16: Nonlinear Response of Molecular Assemblies; The Local-Field Approximation 17: Many Body and Cooperative Effects in the Nonlinear Response

Review :
"In this book [Mukamel] has brought his many contributions together and has woven a fabric that brilliantly ties fundamental principles to experiment with an elegant formalism. This book is of extraordinary value to both the advanced student and researcher in the field. "[It] is written in such a way that it serves as both an advanced text as well as a reference book for the experimentalist. Prof. Mukamel has developed a very powerful unified correlation approach that is applicable to condensed phase systems as well the gas phase. The book provides Green's function techniques which are useful for interpreting nonlinear spectra of frequency and time domain nonlinear spectra of frequency and time domain complex systems. Several applications of current interest are treated in the book including Raman spectrocopies, photon echoes, pump-probe, hole burning, polarization spectroscopies, and impulsive effects. "Possibly the most important contribution made by this book is that it brings together the techniques of nonlinear spectrosopies with analytical and conceptual foundations that make an important step toward creating a new science for probing the properties of matter."--Charles V. Shank, Director, Lawrence Berkeley National Laboratory "I can recommend this book wholeheartedly both as a textbook in a graduate course in modern fast spectroscopy and as a reference mongraph for researchers in the field."--Robert J. Silbey, Journal of the American Chemical Society "Professor Mukamel, a well known and accomplished theoretical physical chemist, has written an up-to-date and comprehensive monograph/textbook on nonlinear optical spectroscopy. Although the focus is theoretical, the attention paid to describing modern experiments is noteworthy. This book is unusual in its completeness: the theoretical development assumes only a standard quantum mechanics course, but goes all the way to the most recent developments; the attention to experiments and what can be learned about molecular dynamics from them is as deep and definitive as the theory. I can recommend this book wholeheartedly both as a textbook in a graduate course in modern fast spectroscopy, and as a reference monograph for researchers in the field."--Robert J. Sibley, MIT, in the Journal of the American Chemical Society "Mukamel has developed a powerful and intuitively satisfying description of dynamical nonlinear spectroscopy which allows the enormous variety of nonlinear spectroscopies to be described and analyzed on a common footing. A student who has mastered graduate quantum mechanics should be able to cope with this material. This book is likely to be essential reading for workers in a wide variety of fields impinging on the dynamics of complex, condensed phase systems. The book will be important both for the design of new experiments as well as their analysis. Mukamel is to be congratulated on this superb book, and his publisher deserves credit for keeping the price within the reach of graduate students and their professors."--Graham R. Fleming, University of California, Berkeley, and Director, Physical Biosciences Division, Lawrence Berkeley National Laboratory "This book is mandatory for workers at the frontier of condensed phase nonlinear spectroscopy. The author is uniquely capable of putting this material together. The book is clearly a work of love. It is complete, deep, and authoritative. The writing has the clarity and coherence expected for a single-author work."--John C. Wright, University of Wisconsin, in Analytical Chemistry "The book is well-organized and contains many references and an extensive index. It is ideal for graduate and post-doctorate students. It is also invaluable for senior staff wishing to become educated on the theoretical state-of-the-art in this field. Stimulated by the recent developments in ultrafast laser technology, progress in the field of nonlinear optical spectroscopy occurs at an increasing pace. Because of Mukamels book there is hope that scientists worldwide will speak a common language, easing communication and stimulating cooperation." --Douwe A. Wiersma, University of Groningen, in Optics and Photonics News * This review takes up two fields (too long to fit into one) "In this book [Mukamel] has brought his many contributions together and has woven a fabric that brilliantly ties fundamental principles to experiment with an elegant formalism. This book is of extraordinary value to both the advanced student and researcher in the field. "[It] is written in such a way that it serves as both an advanced text as well as a reference book for the experimentalist. Prof. Mukamel has developed a very powerful unified correlation approach that is applicable to condensed phase systems as well the gas phase. The book provides Green's function techniques which are useful for interpreting nonlinear spectra of frequency and time domain nonlinear spectra of frequency and time domain complex systems. Several applications of current interest are treated in the book including Raman spectrocopies, photon echoes, pump-probe, hole burning, polarization spectroscopies, and impulsive effects. "Possibly the most important contribution made by this book is that it brings together the techniques of nonlinear spectrosopies with analytical and conceptual foundations that make an important step toward creating a new science for probing the properties of matter."--Charles V. Shank, Director, Lawrence Berkeley National Laboratory "I can recommend this book wholeheartedly both as a textbook in a graduate course in modern fast spectroscopy and as a reference mongraph for researchers in the field."--Robert J. Silbey, Journal of the American Chemical Society "An excellent account of the application of modern Liouville space methods to the theory of nonlinear optical spectroscopy by a pioneer of this approach."--Marvin D. Girardeau, University of Oregon


Best Sellers


Product Details
  • ISBN-13: 9780195132915
  • Publisher: Oxford University Press Inc
  • Publisher Imprint: Oxford University Press Inc
  • Language: English
  • ISBN-10: 0195132912
  • Publisher Date: 29 Apr 1999
  • Binding: Paperback
  • Returnable: N


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Principles of Nonlinear Optical Spectroscopy
Oxford University Press Inc -
Principles of Nonlinear Optical Spectroscopy
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Principles of Nonlinear Optical Spectroscopy

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!