About the Book
This is the eBook version of the printed book. If the print book includes a CD-ROM, this content is not included within the eBook version.
A Coherent Systems View of Wireless and Cellular Network Design and Implementation
Written for senior-level undergraduates, first-year graduate students, and junior technical professionals, Introduction to Wireless Systems offers a coherent systems view of the crucial lower layers of today’s cellular systems. The authors introduce today’s most important propagation issues, modulation techniques, and access schemes, illuminating theory with real-world examples from modern cellular systems. They demonstrate how elements within today’s wireless systems interrelate, clarify the trade-offs associated with delivering high-quality service at acceptable cost, and demonstrate how systems are designed and implemented by teams of complementary specialists.
Coverage includes
Understanding the challenge of moving information wirelessly between two points
Explaining how system and subsystem designers work together to analyze, plan, and implement optimized wireless systems
Designing for quality reception: using the free-space range equation, and accounting for thermal noise
Understanding terrestrial channels and their impairments, including shadowing and multipath reception
Reusing frequencies to provide service over wide areas to large subscriber bases
Using modulation: frequency efficiency, power efficiency, BER, bandwidth, adjacent-channel interference, and spread-spectrum modulation
Implementing multiple access methods, including FDMA, TDMA, and CDMA
Designing systems for today’s most common forms of traffic—both “bursty” and “streaming”
Maximizing capacity via linear predictive coding and other speech compression techniques
Setting up connections that support reliable communication among users
Introduction to Wireless Systems brings together the theoretical and practical knowledge readers need to participate effectively in the planning, design, or implementation of virtually any wireless system.
Table of Contents:
Preface xiii
Acknowledgments xv
About the Authors xvii
Chapter 1: Introduction 1
Overview 1
System Description 4
Historical Perspective 10
Systems Engineering and the Role of the Systems Engineer 12
Chapter 2: The Radio Link 17
Introduction 17
Transmitting and Receiving Electromagnetic Waves 18
Isotropic Radiation 20
Antenna Radiation Patterns 22
The Range Equation 28
Thermal Noise and Receiver Analysis 34
Optimizing the Energy Transmission System 61
Conclusions 70
Problems 70
Chapter 3: Channel Characteristics 77
Introduction 77
Macroscopic Models 1: Reflection from the Earth’s Surface 79
Macroscopic Models 2: Empirical Models 86
Macroscopic Models 3: Log-Normal Shadowing 95
Microscopic Models 1: Multipath Propagation and Fading 100
Microscopic Models 2: Statistical Models for Multipath Propagation 106
Microscopic Models 3: A Two-Ray Model with a Moving Receiver 121
Microscopic Models 4: A Statistical Model with a Moving Receiver 129
Area Coverage 132
The Link Budget 137
Conclusions 139
Problems 141
Chapter 4: Radio Frequency Coverage: Systems Engineering and Design 149
Motivation 149
Requirements Assessment and System Architecture 150
Cellular Concepts 153
Estimation of Interference Levels 167
Cellular System Planning and Engineering 173
Operational Considerations 183
Traffic Engineering, Trunking, and Grade of Service 187
Conclusions 194
Problems 196
Chapter 5: Digital Signaling Principles 203
Introduction 203
Carrier-Based Signaling 226
Spread-Spectrum Signaling 267
Conclusions 278
Problems 280
Chapter 6: Access Methods 287
Introduction 287
Channel Access in Cellular Systems 290
Frequency-Division Multiple Access 295
Time-Division Multiple Access 300
Code-Division Multiple Access 306
Contention-Based Multiple Access 325
Conclusions 335
Problems 337
Chapter 7: Information Sources 343
Introduction 343
Information Sources and Their Characterization 346
Digitization of Speech Signals 355
Coding for Error Correction 376
Conclusions 389
Problems 392
Chapter 8: Putting It All Together 397
Introduction 397
Looking Backward 399
Contemporary Systems and 3G Evolution 411
OFDM: An Architecture for the Fourth Generation 432
Conclusions 442
Appendix A: Statistical Functions and Tables 443
The Normal Distribution 443
Function Tables 446
Appendix B: Traffic Engineering 453
Grade of Service and the State of the Switch 453
A Model for Call Arrivals 454
A Model for Holding Time 456
The Switch State Probabilities 457
Blocking Probability, Offered Load, and Erlang B 460
Computational Techniques for the Erlang B Formula 462
Erlang B Table 465
Acronyms 477
Index 483
About the Author :
Bruce A. Black completed his B.S. at Columbia University, his S.M. at Massachusetts Institute of Technology, and his Ph.D. at the University of California at Berkeley, all in electrical engineering. Since 1983 he has been on the faculty of the Department of Electrical and Computer Engineering at Rose-Hulman Institute of Technology in Terre Haute, Indiana, where he has been advisor to Tau Beta Pi and is advisor to the Amateur Radio club (W9NAA). His interests are in communications, wireless systems, and signal processing. He has developed a variety of courses and laboratories in the signal processing and communications areas, including a junior-level laboratory in communication systems and a senior elective in wireless systems. In 2004 he was named Wireless Educator of the Year by the Global Wireless Education Consortium. He is a member of Tau Beta Pi, Eta Kappa Nu, and Sigma Xi.
Philip S. DiPiazza received a B.E.E from Manhattan College in 1964, an M.E. in electrical engineering from New York University in 1965, and a Ph.D. (electrical engineering) from the Polytechnic Institute of New York in 1976. His career spans more than 40 years of professional experience in industry, academe, and private practice. During the first ten years of his career, he was a systems engineer engaged in the development of advanced airborne radar systems at the Norden Division of United Technologies. He joined Bell Laboratories (AT&T) in 1977, where, as a systems engineer and technical manager, he was engaged in the development of cellular mobile telephone (AMPS) and later wireless PBX systems. Dr. DiPiazza was responsible for the system integration and test of the first North American deployment of AMPS. SInce retiring from AT&T Labs in 1998, he has served as an industry management consultant, Executive Director at Rutgers WINLAB, and Vice President and General Manager of the Melbourne Division of SAFCO Technologies, Inc. As a Visiting Professor at the Florida Institute of Technology, he was founding director for its Wireless Center of Excellence and developed graduate programs in wireless. He is currently an Adjunct Professor at the Rose-Hulman Institute of Technology and a Senior Consultant with Award Solutions, Inc. Dr. DiPiazza is an advisor and member of the Global Wireless Educational Consortium and a member of the IEEE.
Bruce A. Ferguson received the B.S., M.S., and the Ph.D. degree in electrical engineering from Purdue University, West Lafayette, Indiana in 1987, 1988, and 1992 respectively. He is currently a Communication System Engineer with Northrop Grumman Space Technology. He has worked with space and ground communication systems and photonics at TRW Space and Electronics (now NGST), and taught at Rose-Hulman Institute of Technology and The University of Portland in Oregon. Dr. Ferguson is a member Eta Kappa Nu and IEEE.
David R. Voltmer received degrees from Iowa State University (B.S.), University of Southern California (M.S.), and The Ohio State University (Ph.D.), all in electrical engineering. During nearly four decades of teaching, Dr. Voltmer has maintained a technical focus in electromagnetics, microwaves, and antennas. His more recent efforts are directed toward the design process and project courses. He has served in many offices of the ERM division of ASEE and in FIE. Dr. Voltmer is an ASEE Fellow and a Life Senior member of IEEE.
Frederick C. Berry received the B.S., M.S., and D.E. degrees from Louisiana Tech University in 1981, 1983, and 1988 respectively. He taught in the Electrical Engineering Department at Louisiana Tech University from 1982 to 1995. Currently Dr. Berry is Professor and Head of the Electrical and Computer Engineering Department at Rose-Hulman Institute of Technology. In 2007 he became Executive Director of the Global Wireless Education Consortium. He is a member of Tau Beta Pi, Eta Kappa Nu, and Sigma Xi.