Foundations of Deep Reinforcement Learning
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer science > Artificial intelligence > Foundations of Deep Reinforcement Learning: Theory and Practice in Python(Addison-Wesley Data & Analytics Series)
Foundations of Deep Reinforcement Learning: Theory and Practice in Python(Addison-Wesley Data & Analytics Series)

Foundations of Deep Reinforcement Learning: Theory and Practice in Python(Addison-Wesley Data & Analytics Series)


     0     
5
4
3
2
1



International Edition


X
About the Book

Deep reinforcement learning (deep RL) combines deep learning and reinforcement learning, in which artificial agents learn to solve sequential decision-making problems. In the past decade deep RL has achieved remarkable results on a range of problems, from single and multiplayer games - such as Go, Atari games, and DotA 2 - to robotics. Foundations of Deep Reinforcement Learning is an introduction to deep RL that uniquely combines both theory and implementation. It starts with intuition, then carefully explains the theory of deep RL algorithms, discusses implementations in its companion software library SLM Lab, and finishes with the practical details of getting deep RL to work. Understand each key aspect of a deep RL problem Explore policy- and value-based algorithms, including REINFORCE, SARSA, DQN, Double DQN, and Prioritized Experience Replay (PER) Delve into combined algorithms, including Actor-Critic and Proximal Policy Optimization (PPO) Understand how algorithms can be parallelised synchronously and asynchronously Run algorithms in SLM Lab and learn the practical implementation details for getting deep RL to work Explore algorithm benchmark results with tuned hyperparameters Understand how deep RL environments are designed This guide is ideal for both computer science students and software engineers who are familiar with basic machine learning concepts and have a working understanding of Python.

Table of Contents:
Chapter 1: Introduction to Reinforcement Learning Part I: Policy-Based and Value-Based Algorithms Chapter 2: Policy Gradient Chapter 3: State Action Reward State Action Chapter 4: Deep Q-Networks Chapter 5: Improving Deep Q-Networks Part II: Combined Methods Chapter 6: Advantage Actor-Critic Chapter 7: Proximal Policy Optimization Chapter 8: Parallelization Methods Chapter 9: Algorithm Summary Part III: Practical Tips Chapter 10: Getting Reinforcement Learning to Work Chapter 11: SLM Lab Chapter 12: Network Architectures Chapter 13: Hardward Chapter 14: Environment Design Epilogue Appendix A: Deep Reinforcement Learning Timeline Appendix B: Example Environments References Index

About the Author :
Laura Graesser is a research software engineer working in robotics at Google. She holds a master's degree in computer science from New York University, where she specialised in machine learning. Wah Loon Keng is an AI engineer at Machine Zone, where he applies deep reinforcement learning to industrial problems. He has a background in both theoretical physics and computer science.

Review :
“This book provides an accessible introduction to deep reinforcement learning covering the mathematical concepts behind popular algorithms as well as their practical implementation. I think the book will be a valuable resource for anyone looking to apply deep reinforcement learning in practice.” –Volodymyr Mnih, lead developer of DQN “An excellent book to quickly develop expertise in the theory, language, and practical implementation of deep reinforcement learning algorithms. A limpid exposition which uses familiar notation; all the most recent techniques explained with concise, readable code, and not a page wasted in irrelevant detours: it is the perfect way to develop a solid foundation on the topic.” –Vincent Vanhoucke, principal scientist, Google “As someone who spends their days trying to make deep reinforcement learning methods more useful for the general public, I can say that Laura and Keng’s book is a welcome addition to the literature. It provides both a readable introduction to the fundamental concepts in reinforcement learning as well as intuitive explanations and code for many of the major algorithms in the field. I imagine this will become an invaluable resource for individuals interested in learning about deep reinforcement learning for years to come.” –Arthur Juliani, senior machine learning engineer, Unity Technologies “Until now, the only way to get to grips with deep reinforcement learning was to slowly accumulate knowledge from dozens of different sources. Finally, we have a book bringing everything together in one place.” –Matthew Rahtz, ML researcher, ETH Zürich


Best Sellers


Product Details
  • ISBN-13: 9780135172384
  • Publisher: Pearson Education (US)
  • Publisher Imprint: Addison Wesley
  • Height: 234 mm
  • No of Pages: 416
  • Series Title: Addison-Wesley Data & Analytics Series
  • Sub Title: Theory and Practice in Python
  • Width: 176 mm
  • ISBN-10: 0135172381
  • Publisher Date: 11 Feb 2020
  • Binding: Paperback
  • Language: English
  • Returnable: Y
  • Spine Width: 18 mm
  • Weight: 600 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Foundations of Deep Reinforcement Learning: Theory and Practice in Python(Addison-Wesley Data & Analytics Series)
Pearson Education (US) -
Foundations of Deep Reinforcement Learning: Theory and Practice in Python(Addison-Wesley Data & Analytics Series)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Foundations of Deep Reinforcement Learning: Theory and Practice in Python(Addison-Wesley Data & Analytics Series)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!