Statics and Mechanics of Materials
Home > Science, Technology & Agriculture > Mechanical engineering and materials > Materials science > Statics and Mechanics of Materials
26%
Statics and Mechanics of Materials

Statics and Mechanics of Materials


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

For introductory combined Statics and Mechanics of Materials courses found in ME, CE, AE, and Engineering Mechanics departments.    Statics and Mechanics of Materials provides a comprehensive and well-illustrated introduction to the theory and application of statics and mechanics of materials. The text presents a commitment to the development of student problem-solving skills and features many pedagogical aids unique to Hibbeler texts.   MasteringEngineering for Statics and Mechanics of Materials is a total learning package. This innovative online program emulates the instructor’s office–hour environment, guiding students through engineering concepts from Statics and Mechanics of Materials with self-paced individualized coaching.    Teaching and Learning Experience This program will provide a better teaching and learning experience—for you and your students. It provides: Individualized Coaching: MasteringEngineering emulates the instructor’s office-hour environment using self-paced individualized coaching. Problem Solving: A large variety of problem types stress practical, realistic situations encountered in professional practice. Visualization: The photorealistic art program is designed to help students visualize difficult concepts. Review and Student Support: A thorough end of chapter review provides students with a concise reviewing tool. Accuracy: The accuracy of the text and problem solutions has been thoroughly checked by four other parties. Note: If you are purchasing the standalone text or electronic version, MasteringEngineering does not come automatically packaged with the text. To purchase MasteringEngineering, please visit: masteringengineering.com or you can purchase a package of the physical text + MasteringEngineering by searching the Pearson Higher Education website. MasteringEngineering is not a self-paced technology and should only be purchased when required by an instructor.

Table of Contents:
Statics 1 General Principles 3 Chapter Objectives 3 1.1 Mechanics 3 1.2 Fundamental Concepts 4 1.3 Units of Measurement 7 1.4 The International System of Units 9 1.5 Numerical Calculations 10 1.6 General Procedure for Analysis 12 2 Force Vectors 17 Chapter Objectives 17 2.1 Scalars and Vectors 17 2.2 Vector Operations 18 2.3 Vector Addition of Forces 20 2.4 Addition of a System of Coplanar Forces 30 2.5 Cartesian Vectors 38 2.6 Addition of Cartesian Vectors 41 2.7 Position Vectors 50 2.8 Force Vector Directed Along a Line 53 2.9 Dot Product 60 3 Force System Resultants 75 Chapter Objectives 75 3.1 Moment of a Force–Scalar Formulation 75 3.2 Cross Product 79 3.3 Moment of a Force–Vector Formulation 82 3.4 Principle of Moments 86 3.5 Moment of a Force about a Specified Axis 96 3.6 Moment of a Couple 103 3.7 Simplification of a Force and Couple System 112 3.8 Further Simplification of a Force and Couple System 122 4 Equilibrium of a Rigid Body 139 Chapter Objectives 139 4.1 Conditions for Rigid-Body Equilibrium 139 4.2 Free-Body Diagrams 141 4.3 Equations of Equilibrium 151 4.4 Two- and Three-Force Members 157 4.5 Free-Body Diagrams 167 4.6 Equations of Equilibrium 172 4.7 Characteristics of Dry Friction 180 4.8 Problems Involving Dry Friction 184 4.9 Frictional Forces on Flat Belts 197 4.10 Frictional Forces on Screws 200 5 Structural Analysis 215 Chapter Objectives 215 5.1 Simple Trusses 215 5.2 The Method of Joints 218 5.3 Zero-Force Members 224 5.4 The Method of Sections 231 5.5 Frames and Machines 240 6 Center of Gravity, Centroid, and Moment of Inertia 261 Chapter Objectives 261 6.1 Center of Gravity, Center of Mass, and the Centroid of a Body 261 6.2 Composite Bodies 273 6.3 Resultant of a Distributed Loading 281 6.4 Moments of Inertia for Areas 290 6.5 Parallel-Axis Theorem for an Area 291 6.6 Moments of Inertia for Composite Areas 298 7 Stress and Strain 309 Chapter Objectives 309 7.1 Introduction 309 7.2 Internal Resultant Loadings 310 7.3 Stress 322 7.4 Average Normal Stress in an Axially Loaded Bar 324 7.5 Average Shear Stress 331 7.6 Allowable Stress 342 7.7 Design of Simple Connections 343 7.8 Deformation 355 7.9 Strain 356 Mechanics of Materials 8 Mechanical Properties of Materials 373 Chapter Objectives 373 8.1 The Tension and Compression Test 373 8.2 The Stress—Strain Diagram 375 8.3 Stress—Strain Behavior of Ductile and Brittle Materials 379 8.4 Hooke’s Law 382 8.5 Strain Energy 384 8.6 Poisson’s Ratio 392 8.7 The Shear Stress—Strain Diagram 394 9 Axial Load 405 Chapter Objectives 405 9.1 Saint-Venant’s Principle 405 9.2 Elastic Deformation of an Axially Loaded Member 408 9.3 Principle of Superposition 421 9.4 Statically Indeterminate Axially Loaded Member 422 9.5 The Force Method of Analysis for Axially Loaded Members 428 9.6 Thermal Stress 434 9.7 Stress Concentrations 440 10 Torsion 451 Chapter Objectives 451 10.1 Torsional Deformation of a Circular Shaft 451 10.2 The Torsion Formula 454 10.3 Power Transmission 461 10.4 Angle of Twist 468 10.5 Statically Indeterminate Torque-Loaded Members 481 *10.6 Solid Noncircular Shafts 488 10.7 Stress Concentration 492 11 Bending 501 Chapter Objectives 501 11.1 Shear and Moment Diagrams 501 11.2 Graphical Method for Constructing Shear and Moment Diagrams 508 11.3 Bending Deformation of a Straight Member 525 11.4 The Flexure Formula 529 11.5 Unsymmetric Bending 542 11.6 Stress Concentrations 550 12 Transverse Shear 559 Chapter Objectives 559 12.1 Shear in Straight Members 559 12.2 The Shear Formula 561 12.3 Shear Flow in Built-Up Members 578 13 Combined Loadings 591 Chapter Objectives 591 13.1 Thin-Walled Pressure Vessels 591 13.2 State of Stress Caused by Combined Loadings 598 14 Stress and Strain Transformation 619 Chapter Objectives 619 14.1 Plane-Stress Transformation 619 14.2 General Equations of Plane-Stress Transformation 624 14.3 Principal Stresses and Maximum In-Plane Shear Stress 627 14.4 Mohr’s Circle–Plane Stress 639 14.5 Absolute Maximum Shear Stress 650 14.6 Plane Strain 657 14.7 General Equations of Plane-Strain Transformation 658 *14.8 Mohr’s Circle–Plane Strain 666 14.9 Strain Rosettes 674 14.10 Material-Property Relationships 676 15 Design of Beams and Shafts 693 Chapter Objectives 693 15.1 Basis for Beam Design 693 15.2 Prismatic Beam Design 696 *15.3 Fully Stressed Beams 710 16 Deflection of Beams and Shafts 717 Chapter Objectives 717 16.1 The Elastic Curve 717 16.2 Slope and Displacement by Integration 721 *16.3 Discontinuity Functions 735 16.4 Method of Superposition 745 16.5 Statically Indeterminate Beams and Shafts—Method of Superposition 752 17 Buckling of Columns 769 Chapter Objectives 769 17.1 Critical Load 769 17.2 Ideal Column with Pin Supports 772 17.3 Columns Having Various Types of Supports 778 *17.4 The Secant Formula 788 *17.5 Inelastic Buckling 794 Appendices A. Mathematical Review and Expressions 804 B. Geometric Properties of An Area and Volume 808 C. Geometric Properties of Wide-Flange Sections 810 D. Slopes and Deflections of Beams 814 Fundamental Problems Partial Solutions and Answers 816 Answers to Selected Problems 844 Index 871

About the Author :
R.C. Hibbeler graduated from the University of Illinois at Urbana with a BS in Civil Engineering (major in Structures) and an MS in Nuclear Engineering. He obtained his PhD in Theoretical and Applied Mechanics from Northwestern University. Hibbeler’s professional experience includes postdoctoral work in reactor safety and analysis at Argonne National Laboratory, and structural work at Chicago Bridge and Iron, as well as Sargent and Lundy in Tucson. He has practiced engineering in Ohio, New York, and Louisiana. Hibbeler currently teaches at the University of Louisiana, Lafayette. In the past he has taught at the University of Illinois at Urbana, Youngstown State University, Illinois Institute of Technology, and Union College.

Review :
“It is very difficult to find a text book that would compete with Hibbeler’s readability and clarity at the undergraduate level.” — Fady F. Barsoum, Embry-Riddle Aeronautical University “The large variety of illustrated homework problems are helpful for class demonstrations, group problem solving and real situation homework assignments. The inside covers are a very handy resource for both students and instructors.” — Barbara Lograsso, Michigan Technological University “Nice formulation and presentation of equations with clear drawings and photographs.” — Marehalli Prasad, Stevens Institute of Technology


Best Sellers


Product Details
  • ISBN-13: 9780133451603
  • Publisher: Pearson Education (US)
  • Publisher Imprint: Pearson
  • Height: 235 mm
  • No of Pages: 912
  • ISBN-10: 0133451607
  • Publisher Date: 28 Aug 2013
  • Binding: Hardback
  • Language: English
  • Width: 203 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Statics and Mechanics of Materials
Pearson Education (US) -
Statics and Mechanics of Materials
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Statics and Mechanics of Materials

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!