Java Coding Guidelines by Robert Seacord at Bookstore UAE
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Computer programming / software engineering > Programming and scripting languages: general > Java Coding Guidelines: 75 Recommendations for Reliable and Secure Programs(SEI Series in Software Engineering)
4%
Java Coding Guidelines: 75 Recommendations for Reliable and Secure Programs(SEI Series in Software Engineering)

Java Coding Guidelines: 75 Recommendations for Reliable and Secure Programs(SEI Series in Software Engineering)


     0     
5
4
3
2
1



Out of Stock


Notify me when this book is in stock
X
About the Book

“A must-read for all Java developers. . . . Every developer has a responsibility to author code that is free of significant security vulnerabilities. This book provides realistic guidance to help Java developers implement desired functionality with security, reliability, and maintainability goals in mind.”

–Mary Ann Davidson, Chief Security Officer, Oracle Corporation  

Organizations worldwide rely on Java code to perform mission-critical tasks, and therefore that code must be reliable, robust, fast, maintainable, and secure. Java™ Coding Guidelines brings together expert guidelines, recommendations, and code examples to help you meet these demands.

 

Written by the same team that brought you The CERT® Oracle ® Secure Coding Standard for Java™, this guide extends that previous work’s expert security advice to address many additional quality attributes.

 

You’ll find 75 guidelines, each presented consistently and intuitively. For each guideline, conformance requirements are specified; for most, noncompliant code examples and compliant solutions are also offered. The authors explain when to apply each guideline and provide references to even more detailed information.

 

Reflecting pioneering research on Java security, Java™ Coding Guidelines offers updated techniques for protecting against both deliberate attacks and other unexpected events. You’ll find best practices for improving code reliability and clarity, and a full chapter exposing common misunderstandings that lead to suboptimal code.

 

With a Foreword by James A. Gosling, Father of the Java Programming Language



Table of Contents:

Foreword xi

Preface xiii

Acknowledgments xix

About the Authors xxi

 

Chapter 1: Security 1

1. Limit the lifetime of sensitive data 2

2. Do not store unencrypted sensitive information on the client side 5

3. Provide sensitive mutable classes with unmodifiable wrappers 9

4. Ensure that security-sensitive methods are called with validated arguments 11

5. Prevent arbitrary file upload 13

6. Properly encode or escape output 16

7. Prevent code injection 20

8. Prevent XPath injection 23

9. Prevent LDAP injection 27

10. Do not use the clone() method to copy untrusted method parameters 31

11. Do not use Object.equals() to compare cryptographic keys 34

12. Do not use insecure or weak cryptographic algorithms 36

13. Store passwords using a hash function 37

14. Ensure that SecureRandom is properly seeded 42

15. Do not rely on methods that can be overridden by untrusted code 44

16. Avoid granting excess privileges 50

17. Minimize privileged code 54

18. Do not expose methods that use reduced-security checks to untrusted code 56

19. Define custom security permissions for fine-grained security 64

20. Create a secure sandbox using a security manager 67

21. Do not let untrusted code misuse privileges of callback methods 72

 

Chapter 2: Defensive Programming 79

22. Minimize the scope of variables 80

23. Minimize the scope of the @SuppressWarnings annotation 82

24. Minimize the accessibility of classes and their members 84

25. Document thread-safety and use annotations where applicable 89

26. Always provide feedback about the resulting value of a method 96

27. Identify files using multiple file attributes 99

28. Do not attach significance to the ordinal associated with an enum 106

29. Be aware of numeric promotion behavior 108

30. Enable compile-time type checking of variable arity parameter types 112

31. Do not apply public final to constants whose value might change in later releases 115

32. Avoid cyclic dependencies between packages 118

33. Prefer user-defined exceptions over more general exception types 121

34. Try to gracefully recover from system errors 123

35. Carefully design interfaces before releasing them 125

36. Write garbage collection–friendly code 128

 

Chapter 3: Reliability 131

37. Do not shadow or obscure identifiers in subscopes 132

38. Do not declare more than one variable per declaration 134

39. Use meaningful symbolic constants to represent literal values in program logic 138

40. Properly encode relationships in constant definitions 142

41. Return an empty array or collection instead of a null value for methods that return an array or collection 143

42. Use exceptions only for exceptional conditions 146

43. Use a try-with-resources statement to safely handle closeable resources 148

44. Do not use assertions to verify the absence of runtime errors 151

45. Use the same type for the second and third operands in conditional expressions 153

46. Do not serialize direct handles to system resources 157

47. Prefer using iterators over enumerations 159

48. Do not use direct buffers for short-lived, infrequently used objects 162

49. Remove short-lived objects from long-lived container objects 163

 

Chapter 4: Program Understandability 167

50. Be careful using visually misleading identifiers and literals 167

51. Avoid ambiguous overloading of variable arity methods 171

52. Avoid in-band error indicators 173

53. Do not perform assignments in conditional expressions 175

54. Use braces for the body of an if, for, or while statement 178

55. Do not place a semicolon immediately following an if, for, or while condition 180

56. Finish every set of statements associated with a case label with a break statement 181

57. Avoid inadvertent wrapping of loop counters 183

58. Use parentheses for precedence of operation 186

59. Do not make assumptions about file creation 189

60. Convert integers to floating-point for floating-point operations 191

61. Ensure that the clone() method calls super.clone() 194

62. Use comments consistently and in a readable fashion 196

63. Detect and remove superfluous code and values 198

64. Strive for logical completeness 202

65. Avoid ambiguous or confusing uses of overloading 205

 

Chapter 5: Programmer Misconceptions 209

66. Do not assume that declaring a reference volatile guarantees safe publication of the members of the referenced object 209

67. Do not assume that the sleep(), yield(), or getState() methods provide synchronization semantics 216

68. Do not assume that the remainder operator always returns a nonnegative result for integral operands 220

69. Do not confuse abstract object equality with reference equality 222

70. Understand the differences between bitwise and logical operators 225

71. Understand how escape characters are interpreted when strings are loaded 228

72. Do not use overloaded methods to differentiate between runtime types 231

73. Never confuse the immutability of a reference with that of the referenced object 234

74. Use the serialization methods writeUnshared() and readUnshared() with care 239

75. Do not attempt to help the garbage collector by setting local reference variables to null 243

 

Appendix A: Android 245

 

Glossary 249

References 255

Index 263



About the Author :

Fred Long is a senior lecturer in the Department of Computer Science, Aberystwyth University, in the United Kingdom. He is chairman of the British Computer Society’s Mid-Wales Branch. Fred has been a visiting scientist at the Software Engineering Institute (SEI) since 1992. Recently, his research has involved the investigation of vulnerabilities in Java. Fred is also a coauthor of The CERT® Oracle® Secure Coding Standard for Java™ (Addison-Wesley, 2012).

 

Dhruv Mohindra is a technical lead in the security practices group that is part of the CTO’s office at Persistent Systems Limited, India, where he provides information security consulting solutions across various technology verticals such as cloud, collaboration, banking and finance, telecommunications, enterprise, mobility, life sciences, and health care. Dhruv has worked for CERT at the Software Engineering Institute and continues to collaborate to improve the state of security awareness in the programming community. Dhruv is also a coauthor of The CERT® Oracle® Secure Coding Standard for Java™ (Addison-Wesley, 2012).

 

Robert C. Seacord is the Secure Coding Initiative technical manager in the CERT Program of Carnegie Mellon’s Software Engineering Institute (SEI) in Pittsburgh, Pennsylvania. Robert is also a professor in the School of Computer and the Information Networking Institute at Carnegie Mellon University. He is the author of The CERT C Secure Coding Standard (Addison-Wesley, 2008), and is coauthor of Building Systems from Commercial Components (Addison-Wesley, 2002), Modernizing Legacy Systems (Addison-Wesley, 2003), The CERT® Oracle® Secure Coding Standard for Java™ (Addison-Wesley, 2012), and Secure Coding in C and C++ (Addison-Wesley, 2013).

 

Dean F. Sutherland is a senior software security engineer at CERT. Dean received his Ph.D. in software engineering from Carnegie Mellon in 2008. Before his return to academia, he spent 14 years working as a professional software engineer at Tartan, Inc. He spent the last six of those years as a senior member of the technical staff and a technical lead for compiler backend technology. Dean is also a coauthor of The CERT® Oracle® Secure Coding Standard for Java™ (Addison-Wesley, 2012).

 

David Svoboda is a software security engineer at CERT/SEI. He also maintains the CERT Secure Coding standard websites for Java, as well as C, C++, and Perl. David has been the primary developer on a diverse set of software development projects at Carnegie Mellon since 1991, ranging from hierarchical chip modeling and social organization simulation to automated machine translation (AMT). David is also a coauthor of The CERT® Oracle® Secure Coding Standard for Java™ (Addison-Wesley, 2012).


Best Sellers


Product Details
  • ISBN-13: 9780133439533
  • Publisher: Pearson Education (US)
  • Publisher Imprint: Addison Wesley
  • Language: English
  • Series Title: SEI Series in Software Engineering
  • Weight: 1 gr
  • ISBN-10: 0133439534
  • Publisher Date: 14 Aug 2013
  • Binding: Digital download
  • No of Pages: 305
  • Sub Title: 75 Recommendations for Reliable and Secure Programs


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Java Coding Guidelines: 75 Recommendations for Reliable and Secure Programs(SEI Series in Software Engineering)
Pearson Education (US) -
Java Coding Guidelines: 75 Recommendations for Reliable and Secure Programs(SEI Series in Software Engineering)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Java Coding Guidelines: 75 Recommendations for Reliable and Secure Programs(SEI Series in Software Engineering)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!