Introduction to Mechatronic Design
Home > Science, Technology & Agriculture > Electronics and communications engineering > Electronics engineering > Automatic control engineering > Introduction to Mechatronic Design
Introduction to Mechatronic Design

Introduction to Mechatronic Design

|
     0     
5
4
3
2
1




International Edition


About the Book

Introduction to Mechatronic Design is ideal for upper level and graduate Mechatronics courses in Electrical, Computing, or Mechanical & Aerospace Engineering. ¿ Unlike other texts on mechatronics that focus on derivations and calculations, Introduction to Mechatronics, 1e, takes a narrative approach, emphasizing the importance of building intuition and understanding before diving into the math. The authors believe that integration is the core of mechatronics—and students must have a command of each of the domains to create the balance necessary for successful mechatronic design—and devote sections of the book to each area, including mechanical, electrical, and software disciplines, as well as a section on system design and engineering. A robust package of teaching and learning resources accompanies the book.

Table of Contents:
Part 1: Introduction Preface Chapter 1 Introduction 1.1 Philosophy 1.3 Who Should Study Mechatronics? 1.3 How to Use this Book 1.4 Summary   Part 2: Software Chapter 2 What’s a Micro? 2.1 Introduction 2.2 What IS a “Micro”? 2.3 Microprocessors, Microcontrollers, Digital Signal Processors (DSP’s) and More 2.4 Microcontroller Architecture 2.5 The Central Processing Unit (CPU) 2.5.1 Representing Numbers in the Digital Domain 2.5.2 The Arithmetic Logic Unit (ALU) 2.6 The Data Bus and the Address Bus 2.7 Memory 2.8 Subsystems and Peripherals 2.9 Von Neumann Architecture 2.10 The Harvard Architecture 2.11 Real World Examples 2.11.1 The Freescale MC9S12C32 Microcontroller 2.11.2 The Microchip PIC12F609 Microcontroller 2.12 Where to Find More Information 2.13 Homework Problems   Chapter 3 Microcontroller Math and Number Manipulation 3.1 Introduction 3.2 Number Bases and Counting 3.3 Representing Negative Numbers 3.4 Data Types 3.5 Sizes of Common Data Types 3.6 Arithmetic on Fixed Size Variables 3.7 Modulo Arithmetic 3.8 Math Shortcuts 3.8 Boolean Algebra 3.9 Manipulating Individual Bits 3.10 Testing Individual Bits 3.11 Homework Problems   Chapter 4: Programming Languages 4.1 Introduction 4.2 Machine Language 4.3 Assembly Language 4.4 High-Level Languages 4.5 Interpreters 4.6 Compilers 4.7 Hybrid Compiler/Interpreters 4.8 Integrated Development Environments (IDEs) 4.9 Choosing a Programming Language 4.10 Homework Problems   Chapter 5: Program Structures for Embedded Systems 5.1 Background 5.2 Event Driven Programming 5.3 Event Checkers 5.4 Services 5.5 Building an Event Driven Program 5.6 An Example 5.7 Summary of Event Driven Programming 5.8 State Machines 5.9 A State Machine in Software 5.10 The Cockroach Example as a State Machine 5.11 Summary Homework Problems   Chapter 6 Software Design 6.1 Introduction 6.2 Building as a Metaphor for Creating Software 6.3 Introducing Some Software Design Techniques 6.3.1 Decomposition 6.3.2 Abstraction and Information Hiding 6.3.3 Pseudo-Code 6.4 Software Design Process 6.4.1 Generating Requirements 6.4.2 Defining the Program Architecture 6.4.3 The Performance Specification 6.4.4 The Interface Specification 6.4.5 Detail Design 6.4.6 Implementation 6.4.6.1 Intra-Module Organization 6.4.6.2 Writing the Code 6.4.7 Unit Testing 6.4.8 Integration 6.5 The Sample Problem 6.5.1 Requirements for the Morse Code Receiver 6.5.2 The Morse Code Receiver System Architecture 6.5.3 The Morse Code Receiver Software Architecture 6.5.4 The Morse Code Receiver Performance Specifications 6.5.5 The Morse Code Receiver Interface Specification 6.5.5.1 The Button Module Interface Specification 6.5.5.2 The Morse Elements Module Interface Specification 6.5.5.3 The Morse Decode Module Interface Specification 6.5.5.4 The LCD Display Module Interface Specification 6.5.6 The Morse Code Receiver Detail Design 6.5.6.1 Button Module Detail Design 6.5.6.2 Morse Elements Detail Design 6.5.6.3 Morse Decode Detail Design 6.5.6.4 Display Detail Design 6.5.6.5 Main Detail Design 6.5.7 The Morse Code Receiver Implementation 6.5.8 The Morse Code Receiver Unit Testing. 6-28 6.5.9 The Morse Code Receiver Integration 6.6 Homework Problems   Chapter 7 Communications 7.1: Introduction 7.2: Without a Medium, there is no Message 7.3: Bit-Parallel and Bit-Serial Communications 7.3.1: Bit-Serial Communications 7.3.1.1: Synchronous Serial Communications 7.3.1.2: Asynchronous Serial Communications 7.3.2: Bit Parallel Communications 7.4: Signaling Levels 7.4.1: TTL/CMOS Levels 7.4.2: RS-232 7.4.3: RS-485 7.5: Communicating Over Limited Bandwidth Channels 7.5.1: Telephones and Modems 7.5.1.1: Modulation Techniques 7.5.1.2: Amplitude Modulation (AM) 7.5.1.3: Frequency Modulation (FM) 7.5.1.4: Phase Modulation (PM) 7.5.1.5: Quadrature Amplitude Modulation (QAM) 7.6: Communicating with Light 7.7: Communicating over a Radio 7.7.1: RF Remote Controls 7.7.2: RF Data Links 7.7.3: RF Networks 7.8: Homework Problems   Chapter 8 : Microcontroller Peripherals 8.1 : Accessing the Control Registers 8.2 : The Parallel Input/Output Subsystem 8.2.1 : The Data Direction Register 8.2.2 : The Input/Output Register(s) 8.2.3 : Shared Function Pins 8.3 : Timer Subsystems 8.3.1 : Timer Basics 8.3.2 : Timer Overflow 8.3.3 : Output Compare 8.3.4 : Input Capture 8.3.5 : Combining Input Capture and Output Compare to Control an Engine 8.4 : Pulse Width Modulation (PWM) 8.5 : PWM Using the Output Compare System 8.6 : The Analog-to-Digital (A/D) Converter Subsystem 8.6.1 : The Process for Converting an Analog Input to a Digital Value 8.6.2 : The A/D Converter Clock 8.6.3 : Multiplexer Switching Transients and DC Effects 8.6.4 : Automating the A/D Conversion Process 8.7 : Homework Problems   Part 3: Electronics Chapter 9 Basic Circuit Analysis and Passive Components 9.1 Voltage, Current and Power 9.2 Circuits and Ground 9.3 Laying Down the Laws 9.4 Resistance 9.4.1 Resistors in Series and Parallel 9.4.2 The Voltage Divider 9.5 Thevenin Equivalents 9.6 Capacitors 9.6.1 Capacitors in Series and Parallel 9.6.2 Capacitors and Time-Varying Signals 9.7 Inductors 9.7.1 Inductors and Time-Varying Signals 9.8 The Time and Frequency Domains 9.9 Circuit Analysis with Multiple Component Types 9.9.1 Basic RC Circuit Configurations 9.9.2 Low-Pass RC Filter Behavior in the Time Domain 9.9.3 High-Pass RC Filter Behavior in the Time Domain 9.9.4 RL Circuit Behavior in the Time Domain 9.9.5 Low-Pass RC Filter Behavior in the Frequency Domain 9.9.6 High-Pass RC Filter Behavior in the Frequency Domain 9.9.7 High-Pass RC Filter with a DC Bias 9.10 Simulation Tools 9.10.1 Limitations of Simulation Tools 9.11 Real Voltage Sources 9.12 Real Measurements 9.12.1 Measuring Voltage 9.12.2 Measuring Current 9.13 Real Resistors 9.13.1 A Model for a Real Resistor 9.13.2 Resistor Construction Basics 9.13.3 Carbon Film Resistors 9.13.4 Metal Film Resistors 9.13.5 Power Dissipation in Resistors 9.13.6 Potentiometers 9.13.7 Multi-Resistor Packages 9.13.8 Choosing Resistors 9.14 Real Capacitors 9.14.1 A Model for a Real Capacitor 9.14.2 Capacitor Construction Basics 9.14.3 Polar vs. Non-Polar Capacitors 9.14.4 Ceramic Disk Capacitors 9.14.5 Monolithic Ceramic Capacitors 9.14.6 Aluminum Electrolytic Capacitors 9.14.7 Tantalum Capacitors 9.14.8 Film Capacitors 9.14.9 Electric Double Layer Capacitors / Super capacitors 9.14.10 Capacitor Labeling 9.14.10.1 Ceramic Capacitor (Disc and MLC) Labeling 9.14.10.2 Aluminum Electrolytic Capacitor Labeling 9.14.10.3 Tantalum Capacitor Labeling 9.14.10.4 Film Capacitor Labeling 9.14.11 Choosing a Capacitor 9.15 Homework Problems   Chapter 10 Semiconductors 10.1 Doping, Holes and Electrons 10.2 Diodes 10.2.1 The VI Characteristic for Diodes 10.2.2 The Magnitude of Vf 10.2.3 Reverse Recovery 10.2.4 Schottky Diodes 10.2.5 Zener Diodes 10.2.6 Light Emitting Diodes 10.2.7 Photo-Diodes 10.3 Bipolar Junction Transistors 10.3.1 The Darlington Pair 10.3.2 The Photo-Transistor 10.4 MOSFETs 10.5 hoosing Between BJTs and MOSFETs 10.5.1 When Will a BJT be the Best (or Only) Choice? 10.5.2 When Will a MOSFET be the Best (or Only) Choice? 10.5.3 How Do You Choose When Either a MOSFET or a BJT Could Work? 10.6 Multi-Transistor Circuits 10.7 Reading Transistor Data Sheets 10.7.1 Reading a BJT Data Sheet 10.7.2 Reading a MOSFET Data Sheet 10.7.3 A Sample Application 10.7.4 A Potpourri of Transistor Circuits 10.8 Homework Problems   Chapter 11 : Operational Amplifiers 11.1 : Operational Amplifier Behavior 11.2 : Negative Feedback 11.3 : The Ideal Op-Amp 11.4 : Analyzing Op-Amp Circuits 11.4.1 : The Golden Rules 11.4.2 : The Non-Inverting Op-Amp Configuration 11.4.3 : The Inverting Op-Amp Configuration 11.4.3.1 : The Virtual Ground 11.4.3.2 : There is Nothing Magic About Ground 11.4.4 : The Unity Gain Buffer 11.4.5 : The Difference Amplifier Configuration 11.4.6 : The Summer Configuration 11.4.7 : The Trans-Resistive Configuration 11.4.8 : Computation with Op-Amps 11.5 : The Comparator 11.5.1 : Comparator Circuits 11.6 : Homework Problems   Chapter 12 : Real Operational Amplifiers and Comparators 12.1 : Real Op-Amp Characteristics — How the Ideal Assumptions Fail 12.1.1 : Non-Infinite Gain 12.1.2 : Variation in Open Loop Gain with Frequency 12.1.3 : Input Current is Not Zero 12.1.3.1 : Input Bias Current and Input Offset Current 12.1.3.2 : Input Impedance 12.1.4 : The Output Voltage Source is Not Ideal 12.1.5 : Other Non-Idealities 12.1.5.1 : Input Offset Voltage 12.1.5.2 : Power Supplies 12.1.5.3 : Input Common Mode Voltage Range 12.1.5.5 : Input Common Mode Rejection Ratio 12.1.5.6 : Temperature Effects 12.2 : Reading an Op-Amp Data Sheet 12.2.1 : Maxima, Minima and Typical Values 12.2.2 : The Front Page 12.2.3 : The Absolute Maximum Ratings Section 12.2.4 : The Electrical Characteristics Section 12.2.5 : The Packaging Section 12.2.6 : The Typical Applications Section 12.3 : Reading a Comparator Data Sheet 12.3.1 : Comparator Packaging 12.4 : Comparing Op-Amps 12.5 : Homework Problems   Chapter 13 Sensors 13.1 Introduction 13.2 Sensor Output & Microcontroller Inputs 13.3 Sensor Design 13.3.1 Measuring Temperature with a Thermistor 13.3.2 Measuring Acceleration 13.3.3 Definitions of Sensor Performance Characteristics 13.4 Fundamental Sensors and Interface Circuits 13.4.1 Switches as Sensors 13.4.2 Interfacing to Switches 13.4.3 Resistive Sensors 13.4.4 Interfacing to Resistive Sensors 13.4.4.1 Using a Resistive Sensor in a Voltage Divider 13.4.4.2 Measuring Resistance Using a Current Source 13.4.4.3 The Constant Current Circuit 13.4.4.4 The Wheatstone Bridge 13.4.5 Capacitive Sensors 13.4.6 Interfacing to Capacitive Sensors 13.4.6.1 Measuring Capacitance with a Step Input 13.4.6.2 Measuring Capacitance with an Oscillator 13.4.6.3 Measuring Capacitance with a Wheatstone Bridge 13.5 A Survey of Sensors 13.5.1 Light Sensors 13.5.1.1 Photodiodes 13.5.1.2 Phototransistors 13.5.1.3 Emitter-Detector Pair Modules 13.5.1.4 Photocells 13.5.2 Strain Sensors 13.5.2.1 Metal Foil Strain Gages 13.5.2.2 Piezoresistive Strain Gages 13.5.2.3 Load Cells 13.5.3 Temperature Sensors 13.5.3.1 Thermocouples 13.5.3.2 Thermistors 13.5.4 Magnetic Field Sensors 13.5.4.1 Hall Effect Sensors 13.5.4.3 Reed Switches 13.5.5 Proximity Sensors 13.5.5.1 Capacitive Proximity Sensors 13.5.5.2 Inductive Proximity Sensors 13.5.5.3 Ultrasonic Proximity Sensors 13.5.6 Position Sensors 13.5.6.1 Potentiometers 13.5.6.2 Optical Encoders 13.5.6.3 Inductive Pickups / Gear Tooth Sensors 13.5.6.4 Reflective Infrared Sensors 13.5.6.5 Capacitive Displacement Sensors 13.5.6.6 Ultrasonic Displacement Sensors 13.5.6.7 Flex Sensors 13.5.7 Acceleration Sensors


Best Sellers


Product Details
  • ISBN-13: 9780131433564
  • Publisher: Pearson Education (US)
  • Publisher Imprint: Pearson
  • Height: 260 mm
  • No of Pages: 816
  • Spine Width: 50 mm
  • Width: 210 mm
  • ISBN-10: 0131433563
  • Publisher Date: 08 Mar 2011
  • Binding: Hardback
  • Language: English
  • Returnable: Y
  • Weight: 1840 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Introduction to Mechatronic Design
Pearson Education (US) -
Introduction to Mechatronic Design
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Introduction to Mechatronic Design

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals

    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!