Buy New Electron Correlation Methods and their Applications, and Use of Atomic Orbitals with Exponential Asymptotes
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Chemistry > Physical chemistry > New Electron Correlation Methods and their Applications, and Use of Atomic Orbitals with Exponential Asymptotes: Volume 83(Volume 83 Advances in Quantum Chemistry)
New Electron Correlation Methods and their Applications, and Use of Atomic Orbitals with Exponential Asymptotes: Volume 83(Volume 83 Advances in Quantum Chemistry)

New Electron Correlation Methods and their Applications, and Use of Atomic Orbitals with Exponential Asymptotes: Volume 83(Volume 83 Advances in Quantum Chemistry)


     0     
5
4
3
2
1



International Edition


X
About the Book

Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field one that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. In this volume the readers are presented with an exciting combination of themes.

About the Author :
Monika Musial graduated from the University of Silesia in Katowice (MSc in theoretical chemistry) in 1996. She received her Ph.D degree in 2002 (University of Silesia in Katowice) for the work on the development of new coupled cluster models including high-rank cluster operators. In the following years she spent some time in Quantum Theory Project (University of Florida, Gainesville) working as a postdoctoral associate in the research group of Professor Rodney J. Bartlett. In 2010 she made her habilitation (with distinction, Faculty of Chemistry, University of Warsaw) and later in 2014 she received a full professor position. In the following years she continued collaboration with prof. Bartlett as a visiting researcher/professor in Quantum Theory Project. She also made short term visits to the Institute for Nuclear Theory, University of Washington, Seattle, USA and Laboratoire de Chimie Quantique Universite Louis Pasteur, Strasbourg, France. Currently, she is a Professor of Chemistry in the Institute of Chemistry of the University of Silesia in Katowice. Her research interests are focused on the development of new computational methods within the framework of the coupled cluster theory. The new approaches are aimed at the accurate determination of energies and properties of ground and excited states. These tools are particularly useful in studies of potential energy curves and owing to that they can be used in the accurate description of a dissociation process. Such highly accurate methods are necessary in the studies of molecules in ultralow temperatures where the precise knowledge of interatomic interactions in the whole range of the distance between engaged atoms is required. She supervised several research projects focused on the development of new methods devoted to the theory of electron correlation (e.g., from National Science Centre in Poland). She organized international conferences: 15th Central European Symposium on Theoretical Chemistry held in Poland in September 2017; co-chaired (with Prof. Krzysztof Pachucki from University of Warsaw) Warsaw Molecular Electronic Structure Virtual Conference (September 2020). She is a member of Scientific Committee organizing Molecular Electronic Structure conferences. She was a supervisor for a number of Ph.D. thesis at the University of Silesia and she was a member/reviewer in several research funding committees. Born in Aberystwyth, Wales and educated at Trinity College Cambridge, Philip Hoggan has always been French and British. After a mathematical chemistry background, he has studied a number of theoretical systems, with a DSc by research obtained in 1991 at Nancy, France on the way physical interaction between molecules and solid surfaces is a precursor to catalysis. This was treated entirely on the basis of Quantum Mechanics and applied, first to cis-trans butadiene isomerization on alumina and then a number of ‘organic’ reactions. The first lectureship was at Caen, Normandy from 1992. This period led to some fundamental research of ab initio Slater electronic structure calculations for more than 3 atoms. The first related code STOP was published in February 1996 after much work by a postdoctoral fellow A. Bouferguène, now Professor at U Alberta. After continuing to study catalytic systems at Caen, from a theoretical viewpoint, Philip Hoggan was appointed to the Chair of Theoretical Chemistry in Clermont from May 1998. This is still essentially his teaching position, although research interests have switched to solid-state (surface) physics joining the Pascal Institute for physics in Clermont from 2005. This followed a visiting professor stay of 18 months at Tallahassee, Florida in Theoretical Physics. Research emphasis has shifted from the STOP era (where the problem was solved by Coulomb Resolution in 2008) to Quantum Monte Carlo (QMC). The CNRS paid leave for a couple of years for Philip Hoggan to learn about this technique from Cyrus Umrigar, Julien Toulouse, Michel Caffarel and others. Of course, it eventually led to a project to calculate catalytic reactions on metal surfaces that was initiated by G-J Kroes (Leiden, NL) and his ERC in 2014. K Doblhoff-Dier arrived in Clermont for a ground-breaking research fellowship and each of us continues to produce very accurate work e.g. on hydrogen (production and dissociation on metals), as a clean fuel for renewable energy. Now, in 2023 we enter the 400th anniversary of Blaise Pascal’s birth. He invented calculators, some of which are in the Clermont museum. It is wonderful to work in the institute that bears his name conducting QMC on catalytic hydrogen synthesis on super-calculators: the tools that trace their roots to his ‘Pascaline’. Philip Hoggan is married and has twin daughters.


Best Sellers


Product Details
  • ISBN-13: 9780128235461
  • Publisher: Elsevier Science Publishing Co Inc
  • Publisher Imprint: Academic Press Inc
  • Height: 229 mm
  • No of Pages: 352
  • Sub Title: Volume 83
  • Width: 152 mm
  • ISBN-10: 0128235462
  • Publisher Date: 28 Sep 2021
  • Binding: Hardback
  • Language: English
  • Series Title: Volume 83 Advances in Quantum Chemistry
  • Weight: 693 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
New Electron Correlation Methods and their Applications, and Use of Atomic Orbitals with Exponential Asymptotes: Volume 83(Volume 83 Advances in Quantum Chemistry)
Elsevier Science Publishing Co Inc -
New Electron Correlation Methods and their Applications, and Use of Atomic Orbitals with Exponential Asymptotes: Volume 83(Volume 83 Advances in Quantum Chemistry)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

New Electron Correlation Methods and their Applications, and Use of Atomic Orbitals with Exponential Asymptotes: Volume 83(Volume 83 Advances in Quantum Chemistry)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!