Machine Learning and Artificial Intelligence in Radiation Oncology
Home > Computing and Information Technology > Computer science > Artificial intelligence > Machine learning > Machine Learning and Artificial Intelligence in Radiation Oncology: A Guide for Clinicians
Machine Learning and Artificial Intelligence in Radiation Oncology: A Guide for Clinicians

Machine Learning and Artificial Intelligence in Radiation Oncology: A Guide for Clinicians


     0     
5
4
3
2
1



Available


X
About the Book

**Selected for 2025 Doody’s Core Titles® in Radiation Oncology** Machine Learning and Artificial Intelligence in Radiation Oncology: A Guide for Clinicians is designed for the application of practical concepts in machine learning to clinical radiation oncology. It addresses the existing void in a resource to educate practicing clinicians about how machine learning can be used to improve clinical and patient-centered outcomes. This book is divided into three sections: the first addresses fundamental concepts of machine learning and radiation oncology, detailing techniques applied in genomics; the second section discusses translational opportunities, such as in radiogenomics and autosegmentation; and the final section encompasses current clinical applications in clinical decision making, how to integrate AI into workflow, use cases, and cross-collaborations with industry. The book is a valuable resource for oncologists, radiologists and several members of biomedical field who need to learn more about machine learning as a support for radiation oncology.

Table of Contents:
Section 1: FUNDAMENTAL CONCEPTS 1. Overview of machine learning and radiation oncology 2. Machine Learning techniques in genomics (shallow learning) 3. Bayesian machine learning/deep learning 4. Computational Genomics Section 2: TRANSLATIONAL OPPORTUNITIES 5. Germline Radiogenomics 6. Tumor Radiogenomics: PORTOS, GARD/RSI, Bayesian Networks 7. Quantitative imaging with genomics for radiation oncology 8. Autosegmentation Section 3: CURRENT CLINICAL APPLICATIONS 9. Integrating ML into clinical decision making 10. Machine learning classification algorithms for outcome prediction in radiotherapy 11. Clinical integration of AI into workflow 12. Standardization/Use Cases/Data Sharing/Privacy 13. Cross-collaborations with Industry

About the Author :
Dr. Rosenstein is a Professor of Radiation Oncology and a Professor of Genetics & Genomic Sciences at the Icahn School of Medicine at Mount Sinai. The focus of Dr. Rosenstein’s research program for the past 25 years has been the identification of genetic/genomic markers associated with the development of adverse effects resulting from radiotherapy. In this context, he was one of the first investigators to hypothesize that possession of single nucleotide polymorphisms in certain genes may render some cancer patients more susceptible to injuries resulting from radiotherapy. Dr. Rosenstein established and co-led for 14 years the Radiogenomics Consortium (RGC), representing an international consortium currently with 240 members in 33 countries across 135 institutions. Through his efforts, Dr. Rosenstein, has been in the forefront of research in the use of big data in radiation oncology and has collaborated with investigators possessing expertise in bioinformatics and statistics to employ machine learning-based modeling approaches in radiogenomic studies. Dr. Rattay is Associate Professor in Breast Surgery at the University of Leicester and Consultant Breast Surgeon at University Hospitals of Leicester, UK. He has been working in the field of radiobiology and radiogenomics of the normal tissues for over ten years. His research is specifically focused on the effect of breast radiotherapy on surgical and patient-reported outcomes. This includes Big Data and machine learning (ML) approaches and he is also interested in applying qualitative research methodology to explore breast cancer survivors’ views and experience of treatment and personalised medicine. Dr. Rattay works in a multi-disciplinary research team with nurses, clinical psychologists, geneticists, radiographers and medical physicists, and he has established collaborations with ML experts both nationally and internationally. Dr. Kang has over 15 years of experience in developing and applying novel computational methods to complex, biomedical data. He is an assistant professor and biomedical informatics lead in the Dept. of Radiation Oncology at the University of Washington. His research focus is on machine learning in oncology with a specific focus on natural language processing and topic modeling and his operations focus is on using informatics to improve patient care and decrease physician burden. Dr. Kang has been invited to speak on AI in oncology at several national and international conferences and workshops.

Review :
*4 stars* "...addresses the very timely topics of machine learning (ML) and artificial intelligence (AI).... [It] serve[s] as a guide for clinicians without technical expertise who desire a comprehensive introduction to the clinical research and application of ML and AI; certainly worthwhile objectives.... It gives an overview of key aspects of ML and AI to the large majority of individuals without deep knowledge of these topics.... [P]rimary audience is practicing radiation oncologists and medical physicists, but it will also be of interest to trainees in our field.... Each chapter includes a "Key Point" summary which, while generally helpful, is at times somewhat generic. [A] welcome addition to the radiation oncology literature.... [A] comprehensive in scope, delving into further details of interest to those seeking mastery of these subjects." --©Doody’s Review Service, 2024, Mark D. Hurwitz, MD (New York Medical College)


Best Sellers


Product Details
  • ISBN-13: 9780128220009
  • Publisher: Elsevier Science Publishing Co Inc
  • Publisher Imprint: Academic Press Inc
  • Height: 235 mm
  • No of Pages: 478
  • Weight: 450 gr
  • ISBN-10: 0128220007
  • Publisher Date: 04 Dec 2023
  • Binding: Paperback
  • Language: English
  • Sub Title: A Guide for Clinicians
  • Width: 191 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Machine Learning and Artificial Intelligence in Radiation Oncology: A Guide for Clinicians
Elsevier Science Publishing Co Inc -
Machine Learning and Artificial Intelligence in Radiation Oncology: A Guide for Clinicians
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Machine Learning and Artificial Intelligence in Radiation Oncology: A Guide for Clinicians

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!