Supervised Machine Learning in Wind Forecasting and Ramp Event Prediction
Home > Science, Technology & Agriculture > Energy technology and engineering > Alternative and renewable energy sources and technology > Supervised Machine Learning in Wind Forecasting and Ramp Event Prediction: (Wind Energy Engineering)
Supervised Machine Learning in Wind Forecasting and Ramp Event Prediction: (Wind Energy Engineering)

Supervised Machine Learning in Wind Forecasting and Ramp Event Prediction: (Wind Energy Engineering)


     0     
5
4
3
2
1



Available


X
About the Book

Supervised Machine Learning in Wind Forecasting and Ramp Event Prediction provides an up-to- date overview on the broad area of wind generation and forecasting, with a focus on the role and need of Machine Learning in this emerging field of knowledge. Various regression models and signal decomposition techniques are presented and analyzed, including least-square, twin support and random forest regression, all with supervised Machine Learning. The specific topics of ramp event prediction and wake interactions are addressed in this book, along with forecasted performance. Wind speed forecasting has become an essential component to ensure power system security, reliability and safe operation, making this reference useful for all researchers and professionals researching renewable energy, wind energy forecasting and generation.

Table of Contents:
1. Introduction 2. Wind Energy Fundamentals 3. Paradigms in Wind Forecasting4. Supervised Machine Learning Models based on Support Vector Regression5. Decision tree ensemble-based Regression Models6. Hybrid Machine Intelligent Wind Speed Forecasting Models7. Ramp Prediction in Wind Farms8. Supervised Learning for Forecasting in presence of Wind WakesA. Introduction to R for Machine Learning RegressionA.1 Data handling in RA.2 Linear Regression Analysis in RA.3 Support vector regression in R A.4 Random Forest Regression in R A.5 Gradient boosted machines in R

About the Author :
Harsh S. Dhiman is a research scholar in Department of Electrical Engineering from Institute of Infrastructure Technology Research and Management (IITRAM), Ahmedabad, India. He obtained his Master’s degree in Electrical Power Engineering from Faculty of Technology & Engineering, The Maharaja Sayajirao University of Baroda, Vadodara, India in 2016 and B. Tech in Electrical Engineering from Institute of Technology, Nirma University, Ahmedabad, India in 2014. His current research interests include Hybrid operation of wind farms, Hybrid wind forecasting techniques and Wake management in wind farms. Dipankar Deb completed his Ph.D. from University of Virginia, Charlottesville under the supervision of Prof.Gang Tao, IEEE Fellow and Professor in the department of ECE in 2007. In 2017, he was elected to be a IEEE Senior Member. He has served as a Lead Engineer at GE Global Research Bengaluru (2012-15) and as an Assistant Professor in EE, IIT Guwahati 2010-12. Presently, he is a Professor in Electrical Engineering at Institute of Infrastructure Technology Research and Management (IITRAM), Ahmedabad. His research interests include Control theory, Stability analysis and Renewable energy systems. Valentina Emilia Balas is currently a Full Professor in the Department of Automatics and Applied Software at the Faculty of Engineering, “Aurel Vlaicu” University of Arad, Romania. She holds a PhD cum Laude in Applied Electronics and Telecommunications from the Polytechnic University of Timisoara. Dr. Balas is the author of more than 350 research papers. She is the Editor-in-Chief of the 'International Journal of Advanced Intelligence Paradigms' and the 'International Journal of Computational Systems Engineering', an editorial board member for several other national and international publications, and an expert evaluator for national and international projects and PhD theses.


Best Sellers


Product Details
  • ISBN-13: 9780128213537
  • Publisher: Elsevier Science Publishing Co Inc
  • Publisher Imprint: Academic Press Inc
  • Height: 229 mm
  • No of Pages: 216
  • Weight: 344 gr
  • ISBN-10: 0128213531
  • Publisher Date: 31 Jan 2020
  • Binding: Paperback
  • Language: English
  • Series Title: Wind Energy Engineering
  • Width: 152 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Supervised Machine Learning in Wind Forecasting and Ramp Event Prediction: (Wind Energy Engineering)
Elsevier Science Publishing Co Inc -
Supervised Machine Learning in Wind Forecasting and Ramp Event Prediction: (Wind Energy Engineering)
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Supervised Machine Learning in Wind Forecasting and Ramp Event Prediction: (Wind Energy Engineering)

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    New Arrivals


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!