Handbook of Statistical Analysis and Data Mining Applications
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Computing and Information Technology > Databases > Data mining > Handbook of Statistical Analysis and Data Mining Applications
Handbook of Statistical Analysis and Data Mining Applications

Handbook of Statistical Analysis and Data Mining Applications


     0     
5
4
3
2
1



International Edition


X
About the Book

Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce.

Table of Contents:
Part 1: History Of Phases Of Data Analysis, Basic Theory, And The Data Mining Process 1. The Background for Data Mining Practice 2. Theoretical Considerations for Data Mining 3. The Data Mining and Predictive Analytic Process 4. Data Understanding and Preparation 5. Feature Selection 6. Accessory Tools for Doing Data Mining Part 2: The Algorithms And Methods In Data Mining And Predictive Analytics And Some Domain Areas 7. Basic Algorithms for Data Mining: A Brief Overview 8. Advanced Algorithms for Data Mining 9. Classification 10. Numerical Prediction 11. Model Evaluation and Enhancement 12. Predictive Analytics for Population Health and Care 13. Big Data in Education: New Efficiencies for Recruitment, Learning, and Retention of Students and Donors 14. Customer Response Modeling 15. Fraud Detection Part 3: Tutorials And Case Studies Tutorial A Example of Data Mining Recipes Using Windows 10 and Statistica 13 Tutorial B Using the Statistica Data Mining Workspace Method for Analysis of Hurricane Data (Hurrdata.sta) Tutorial C Case Study—Using SPSS Modeler and STATISTICA to Predict Student Success at High-Stakes Nursing Examinations (NCLEX) Tutorial D Constructing a Histogram in KNIME Using MidWest Company Personality Data Tutorial E Feature Selection in KNIME Tutorial F Medical/Business Tutorial Tutorial G A KNIME Exercise, Using Alzheimer’s Training Data of Tutorial F Tutorial H Data Prep 1-1: Merging Data Sources Tutorial I Data Prep 1–2: Data Description Tutorial J Data Prep 2-1: Data Cleaning and Recoding Tutorial K Data Prep 2-2: Dummy Coding Category Variables Tutorial L Data Prep 2-3: Outlier Handling Tutorial M Data Prep 3-1: Filling Missing Values With Constants Tutorial N Data Prep 3-2: Filling Missing Values With Formulas Tutorial O Data Prep 3-3: Filling Missing Values With a Model Tutorial P City of Chicago Crime Map: A Case Study Predicting Certain Kinds of Crime Using Statistica Data Miner and Text Miner Tutorial Q Using Customer Churn Data to Develop and Select a Best Predictive Model for Client Defection Using STATISTICA Data Miner 13 64-bit for Windows 10 Tutorial R Example With C&RT to Predict and Display Possible Structural Relationships Tutorial S Clinical Psychology: Making Decisions About Best Therapy for a Client Part 4: Model Ensembles, Model Complexity; Using the Right Model for the Right Use, Significance, Ethics, and the Future, and Advanced Processes 16. The Apparent Paradox of Complexity in Ensemble Modeling 17. The "Right Model" for the "Right Purpose": When Less Is Good Enough 18. A Data Preparation Cookbook 19. Deep Learning 20. Significance versus Luck in the Age of Mining: The Issues of P-Value "Significance" and "Ways to Test Significance of Our Predictive Analytic Models" 21. Ethics and Data Analytics 22. IBM Watson

About the Author :
Dr. Kenneth Yale has a track record of Business Development, Product Innovation, and Strategy in both entrepreneurial and large companies across healthcare industry verticals, including Health Payers, Life Sciences, and Government Programs. He is an agile executive who identifies future industry trends and seizes opportunities to build sustainable businesses. His accomplishments include innovations in Health Insurance, Care Management, Data Science, Big Data Healthcare Analytics, Clinical Decision Support, and Precision Medicine. His prior experience includes: medical director and vice president of clinical solutions at ActiveHealth Management/Aetna, chief executive of innovation incubator business unit at UnitedHealth Group Community & State, strategic counsel for Johnson & Johnson, corporate vice president of CorSolutions and Matria Healthcare, senior vice president and general counsel at EduNeering, and founder and CEO of Advanced Health Solutions. Dr. Yale previously worked in the federal government as Commissioned Officer in the US Public Health Service, Legislative Counsel in the US Senate, Special Assistant to the President and Executive Director of the White House Domestic Policy Council, and Chief of Staff of the White House Office of Science and Technology. Dr. Yale provides leadership and actively participates with industry organizations, including the American Medical Informatics Association - Workgroup on Genomics and Translational Bioinformatics; Bloomberg/BNA Health Insurance Advisory Board; Healthcare Information and Management Systems Society; and the URAC Accreditation Organization. He is a frequent speaker and author on health and technology topics, including the books “Managed Care Compliance Guide,” “Clinical Integration: Population Health and Accountable Care,” tutorial author in “Practical Predictive Analytics and Decisioning Systems for Medicine,” and editor with “Statistical Analysis and Data Mining Applications Second Edition. Bob Nisbet, PhD, is a Data Scientist, currently modeling precancerous colon polyp presence with clinical data at the UC-Irvine Medical Center. He has experience in predictive modeling in Telecommunications, Insurance, Credit, Banking. His academic experience includes teaching in Ecology and in Data Science. His industrial experience includes predictive modeling at AT&T, NCR, and FICO. He has worked also in Insurance, Credit, membership organizations (e.g. AAA), Education, and Health Care industries. He retired as an Assistant Vice President of Santa Barbara Bank & Trust in charge of business intelligence reporting and customer relationship management (CRM) modeling. Dr. Gary Miner PhD received a B.S. from Hamline University, St. Paul, MN, with biology, chemistry, and education majors; an M.S. in zoology and population genetics from the University of Wyoming; and a Ph.D. in biochemical genetics from the University of Kansas as the recipient of a NASA pre-doctoral fellowship. He pursued additional National Institutes of Health postdoctoral studies at the U of Minnesota and U of Iowa eventually becoming immersed in the study of affective disorders and Alzheimer's disease. In 1985, he and his wife, Dr. Linda Winters-Miner, founded the Familial Alzheimer's Disease Research Foundation, which became a leading force in organizing both local and international scientific meetings, bringing together all the leaders in the field of genetics of Alzheimer's from several countries, resulting in the first major book on the genetics of Alzheimer’s disease. In the mid-1990s, Dr. Miner turned his data analysis interests to the business world, joining the team at StatSoft and deciding to specialize in data mining. He started developing what eventually became the Handbook of Statistical Analysis and Data Mining Applications (co-authored with Drs. Robert A. Nisbet and John Elder), which received the 2009 American Publishers Award for Professional and Scholarly Excellence (PROSE). Their follow-up collaboration, Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications, also received a PROSE award in February of 2013. Gary was also co-author of “Practical Predictive Analytics and Decisioning Systems for Medicine (Academic Press, 2015). Overall, Dr. Miner’s career has focused on medicine and health issues, and the use of data analytics (statistics and predictive analytics) in analyzing medical data to decipher fact from fiction. Gary has also served as Merit Reviewer for PCORI (Patient Centered Outcomes Research Institute) that awards grants for predictive analytics research into the comparative effectiveness and heterogeneous treatment effects of medical interventions including drugs among different genetic groups of patients; additionally he teaches on-line classes in ‘Introduction to Predictive Analytics’, ‘Text Analytics’, ‘Risk Analytics’, and ‘Healthcare Predictive Analytics’ for the University of California-Irvine. Recently, until ‘official retirement’ 18 months ago, he spent most of his time in his primary role as Senior Analyst-Healthcare Applications Specialist for Dell | Information Management Group, Dell Software (through Dell’s acquisition of StatSoft (www.StatSoft.com) in April 2014). Currently Gary is working on two new short popular books on ‘Healthcare Solutions for the USA’ and ‘Patient-Doctor Genomics Stories’.

Review :
"Data mining practitioners, here is your bible, the complete "driver's manual" for data mining. From starting the engine to handling the curves, this book covers the gamut of data mining techniques - including predictive analytics and text mining - illustrating how to achieve maximal value across business, scientific, engineering, and medical applications. What are the best practices through each phase of a data mining project? How can you avoid the most treacherous pitfalls? The answers are in here. "Going beyond its responsibility as a reference book, the heavily-updated second edition also provides all-new, detailed tutorials with step-by-step instructions to drive established data mining software tools across real world applications. This way, newcomers start their engines immediately and experience hands-on success. "What's more, this edition drills down on hot topics across seven new chapters, including deep learning and how to avert "b---s---" results. If you want to roll-up your sleeves and execute on predictive analytics, this is your definite, go-to resource. To put it lightly, if this book isn't on your shelf, you're not a data miner." --Eric Siegel, Ph.D., founder of Predictive Analytics World and author of "Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die" "Great introduction to the real-world process of data mining. The overviews, practical advice, tutorials, and extra CD material make this book an invaluable resource for both new and experienced data miners." --Karl Rexer, PhD (President and Founder of Rexer Analytics, Boston, Massachusetts)


Best Sellers


Product Details
  • ISBN-13: 9780124166325
  • Publisher: Elsevier Science Publishing Co Inc
  • Publisher Imprint: Academic Press Inc
  • Height: 235 mm
  • No of Pages: 822
  • Width: 191 mm
  • ISBN-10: 0124166326
  • Publisher Date: 10 Nov 2017
  • Binding: Hardback
  • Language: English
  • Weight: 1790 gr


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Handbook of Statistical Analysis and Data Mining Applications
Elsevier Science Publishing Co Inc -
Handbook of Statistical Analysis and Data Mining Applications
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Handbook of Statistical Analysis and Data Mining Applications

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!