Buy Doing Bayesian Data Analysis Book by John Kruschke
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Book 1
Book 2
Book 3
Home > Mathematics and Science Textbooks > Mathematics > Applied mathematics > Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan
Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan

Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan


     0     
5
4
3
2
1



International Edition


X
About the Book

Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan, Second Edition provides an accessible approach for conducting Bayesian data analysis, as material is explained clearly with concrete examples. Included are step-by-step instructions on how to carry out Bayesian data analyses in the popular and free software R and WinBugs, as well as new programs in JAGS and Stan. The new programs are designed to be much easier to use than the scripts in the first edition. In particular, there are now compact high-level scripts that make it easy to run the programs on your own data sets. The book is divided into three parts and begins with the basics: models, probability, Bayes’ rule, and the R programming language. The discussion then moves to the fundamentals applied to inferring a binomial probability, before concluding with chapters on the generalized linear model. Topics include metric-predicted variable on one or two groups; metric-predicted variable with one metric predictor; metric-predicted variable with multiple metric predictors; metric-predicted variable with one nominal predictor; and metric-predicted variable with multiple nominal predictors. The exercises found in the text have explicit purposes and guidelines for accomplishment. This book is intended for first-year graduate students or advanced undergraduates in statistics, data analysis, psychology, cognitive science, social sciences, clinical sciences, and consumer sciences in business.

Table of Contents:
1. What’s in This Book (Read This First!) PART I The Basics: Models, Probability, Bayes’ Rule, and R 2. Introduction: Credibility, Models, and Parameters 3. The R Programming Language 4. What Is This Stuff Called Probability? 5. Bayes’ Rule PART II All the Fundamentals Applied to Inferring a Binomial Probability 6. Inferring a Binomial Probability via Exact Mathematical Analysis 7. Markov Chain Monte Carlo 8. JAGS 9. Hierarchical Models 10. Model Comparison and Hierarchical Modeling 11. Null Hypothesis Significance Testing 12. Bayesian Approaches to Testing a Point ("Null") Hypothesis 13. Goals, Power, and Sample Size 14. Stan PART III The Generalized Linear Model 15. Overview of the Generalized Linear Model 16. Metric-Predicted Variable on One or Two Groups 17. Metric Predicted Variable with One Metric Predictor 18. Metric Predicted Variable with Multiple Metric Predictors 19. Metric Predicted Variable with One Nominal Predictor 20. Metric Predicted Variable with Multiple Nominal Predictors 21. Dichotomous Predicted Variable 22. Nominal Predicted Variable 23. Ordinal Predicted Variable 24. Count Predicted Variable 25. Tools in the Trunk

About the Author :
John K. Kruschke is Professor of Psychological and Brain Sciences, and Adjunct Professor of Statistics, at Indiana University in Bloomington, Indiana, USA. He is eight-time winner of Teaching Excellence Recognition Awards from Indiana University. He won the Troland Research Award from the National Academy of Sciences (USA), and the Remak Distinguished Scholar Award from Indiana University. He has been on the editorial boards of various scientific journals, including Psychological Review, the Journal of Experimental Psychology: General, and the Journal of Mathematical Psychology, among others.After attending the Summer Science Program as a high school student and considering a career in astronomy, Kruschke earned a bachelor's degree in mathematics (with high distinction in general scholarship) from the University of California at Berkeley. As an undergraduate, Kruschke taught self-designed tutoring sessions for many math courses at the Student Learning Center. During graduate school he attended the 1988 Connectionist Models Summer School, and earned a doctorate in psychology also from U.C. Berkeley. He joined the faculty of Indiana University in 1989. Professor Kruschke's publications can be found at his Google Scholar page. His current research interests focus on moral psychology.Professor Kruschke taught traditional statistical methods for many years until reaching a point, circa 2003, when he could no longer teach corrections for multiple comparisons with a clear conscience. The perils of p values provoked him to find a better way, and after only several thousand hours of relentless effort, the 1st and 2nd editions of Doing Bayesian Data Analysis emerged.

Review :
"Both textbook and practical guide, this work is an accessible account of Bayesian data analysis starting from the basics…This edition is truly an expanded work and includes all new programs in JAGS and Stan designed to be easier to use than the scripts of the first edition, including when running the programs on your own data sets." --MAA Reviews "fills a gaping hole in what is currently available, and will serve to create its own market" --Prof. Michael Lee, U. of Cal., Irvine; pres. Society for Mathematical Psych "has the potential to change the way most cognitive scientists and experimental psychologists approach the planning and analysis of their experiments" --Prof. Geoffrey Iverson, U. of Cal., Irvine; past pres. Society for Mathematical Psych. "better than others for reasons stylistic.... buy it -- it’s truly amazin’!" --James L. (Jay) McClelland, Lucie Stern Prof. & Chair, Dept. of Psych., Stanford U. "the best introductory textbook on Bayesian MCMC techniques" --J. of Mathematical Psych. "potential to change the methodological toolbox of a new generation of social scientists" --J. of Economic Psych. "revolutionary" --British J. of Mathematical and Statistical Psych. "writing for real people with real data. From the very first chapter, the engaging writing style will get readers excited about this topic" --PsycCritiques


Best Sellers


Product Details
  • ISBN-13: 9780124058880
  • Publisher: Elsevier Science Publishing Co Inc
  • Publisher Imprint: Academic Press Inc
  • Height: 235 mm
  • No of Pages: 776
  • Weight: 1834 gr
  • ISBN-10: 0124058884
  • Publisher Date: 30 Dec 2014
  • Binding: Hardback
  • Language: English
  • Sub Title: A Tutorial with R, JAGS, and Stan
  • Width: 191 mm


Similar Products

Add Photo
Add Photo

Customer Reviews

REVIEWS      0     
Click Here To Be The First to Review this Product
Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan
Elsevier Science Publishing Co Inc -
Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan
Writing guidlines
We want to publish your review, so please:
  • keep your review on the product. Review's that defame author's character will be rejected.
  • Keep your review focused on the product.
  • Avoid writing about customer service. contact us instead if you have issue requiring immediate attention.
  • Refrain from mentioning competitors or the specific price you paid for the product.
  • Do not include any personally identifiable information, such as full names.

Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan

Required fields are marked with *

Review Title*
Review
    Add Photo Add up to 6 photos
    Would you recommend this product to a friend?
    Tag this Book Read more
    Does your review contain spoilers?
    What type of reader best describes you?
    I agree to the terms & conditions
    You may receive emails regarding this submission. Any emails will include the ability to opt-out of future communications.

    CUSTOMER RATINGS AND REVIEWS AND QUESTIONS AND ANSWERS TERMS OF USE

    These Terms of Use govern your conduct associated with the Customer Ratings and Reviews and/or Questions and Answers service offered by Bookswagon (the "CRR Service").


    By submitting any content to Bookswagon, you guarantee that:
    • You are the sole author and owner of the intellectual property rights in the content;
    • All "moral rights" that you may have in such content have been voluntarily waived by you;
    • All content that you post is accurate;
    • You are at least 13 years old;
    • Use of the content you supply does not violate these Terms of Use and will not cause injury to any person or entity.
    You further agree that you may not submit any content:
    • That is known by you to be false, inaccurate or misleading;
    • That infringes any third party's copyright, patent, trademark, trade secret or other proprietary rights or rights of publicity or privacy;
    • That violates any law, statute, ordinance or regulation (including, but not limited to, those governing, consumer protection, unfair competition, anti-discrimination or false advertising);
    • That is, or may reasonably be considered to be, defamatory, libelous, hateful, racially or religiously biased or offensive, unlawfully threatening or unlawfully harassing to any individual, partnership or corporation;
    • For which you were compensated or granted any consideration by any unapproved third party;
    • That includes any information that references other websites, addresses, email addresses, contact information or phone numbers;
    • That contains any computer viruses, worms or other potentially damaging computer programs or files.
    You agree to indemnify and hold Bookswagon (and its officers, directors, agents, subsidiaries, joint ventures, employees and third-party service providers, including but not limited to Bazaarvoice, Inc.), harmless from all claims, demands, and damages (actual and consequential) of every kind and nature, known and unknown including reasonable attorneys' fees, arising out of a breach of your representations and warranties set forth above, or your violation of any law or the rights of a third party.


    For any content that you submit, you grant Bookswagon a perpetual, irrevocable, royalty-free, transferable right and license to use, copy, modify, delete in its entirety, adapt, publish, translate, create derivative works from and/or sell, transfer, and/or distribute such content and/or incorporate such content into any form, medium or technology throughout the world without compensation to you. Additionally,  Bookswagon may transfer or share any personal information that you submit with its third-party service providers, including but not limited to Bazaarvoice, Inc. in accordance with  Privacy Policy


    All content that you submit may be used at Bookswagon's sole discretion. Bookswagon reserves the right to change, condense, withhold publication, remove or delete any content on Bookswagon's website that Bookswagon deems, in its sole discretion, to violate the content guidelines or any other provision of these Terms of Use.  Bookswagon does not guarantee that you will have any recourse through Bookswagon to edit or delete any content you have submitted. Ratings and written comments are generally posted within two to four business days. However, Bookswagon reserves the right to remove or to refuse to post any submission to the extent authorized by law. You acknowledge that you, not Bookswagon, are responsible for the contents of your submission. None of the content that you submit shall be subject to any obligation of confidence on the part of Bookswagon, its agents, subsidiaries, affiliates, partners or third party service providers (including but not limited to Bazaarvoice, Inc.)and their respective directors, officers and employees.

    Accept

    Fresh on the Shelf


    Inspired by your browsing history


    Your review has been submitted!

    You've already reviewed this product!